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Abstract 
 
Global Optimization Problems are encountered in many scientific fields concerned 

with industrial applications such as kinematics, chemical process optimization, 

molecular design, and so on. When non-linear relationships among variables are 

defined by problem constraints resulting in non-convex feasible spaces the problem of 

identifying feasible solutions may become very hard. Consequently, finding the 

location of the global optimum in the problem is more difficult. The objective of this 

thesis is to develop a generic methodology, which can solve bound constrained 

optimization problems (BCOP), continuous constraint satisfaction problems (CCSP) 

and constrained optimization problems (COP). A new subdivision direction selection 

method is proposed in this research for these problems.  

A variant for the proposed new subdivision selection method is also proposed for 

BCOP. The new variant considers the width of interval in addition to sub-expression 

bounds. The proposed two rules for BCOP target directly on the uncertainty degree of 

the objective function (with respect to the optimality). Reducing these uncertainties as 

such results in the reliable detection of sub-optimal boxes, thereby diminishing the 

number of boxes to be assessed.   

The efficiency of the proposed variants is illustrated on well-known bound 

constrained test functions and compared with established subdivision direction 

selection methods from the literature.   

For CCSP and COP a new adaptive search tree framework where nodes (boxes 

defining different variable domains) are explored using a restricted hybrid depth-first 

and best-first branching strategy is proposed. This hybrid approach is also used for 

activating local search in boxes with the aim of identifying different feasible 
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stationary points. The proposed search tree management approach improves the 

convergence of the interval partitioning method that is also supported by the new 

parallel subdivision direction selection rule used in selecting the variables to be 

partitioned in a given box.  

The proposed rule targets directly the uncertainty degrees of constraints with respect 

to feasibility and the uncertainty degree of the objective function with respect to 

optimality. Reducing these uncertainties as such results in the early and reliable 

detection of infeasible and sub-optimal boxes, thereby diminishing the number of 

boxes to be assessed. Consequently, chances of identifying local stationary points 

during the early stages of the search increase.  

For CCSP, the effectiveness of the proposed interval partitioning algorithm is 

compared with published results of established symbolic-numeric methods for solving 

CCSP on a number of state-of-the-art benchmarks. The effectiveness is also illustrated 

on several practical applications. 

For COP, the effectiveness of the proposed interval partitioning algorithm is 

illustrated on several state-of-the-art benchmarks and also several practical 

applications and compared with professional commercial local and global solvers. 

Empirical results show that this approach is as good as available COP solvers. 
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Chapter 1 

Introduction 

1.1. Background 

Despite the advanced computer support we have at hand, optimization problems are 

still challenging for researchers working in computing sciences, mathematics and 

operations research fields. Limited success has been achieved in classifying and 

identifying global optima in nonlinear and discrete optimization systems. Often, the 

number of local optima in these problems is large; therefore, the standard nonlinear 

programming methods may fail to locate the global optimum. On the other hand, a 

numerical and exhaustive algorithm suffers from slow convergence when the feasible 

region defined by the given system of equations is not convex or covers a large space. 

Identifying the global optimum of a given system in a relatively fast and efficient way 

is very important both for engineering community and academics. 

In engineering, economics and other scientific studies, quantitative decisions are 

frequently modeled by applying optimization concepts and tools. The decision maker 

or modeler typically wants to find the “absolutely best" decision, which corresponds 

to the maximum (or minimum) of a given objective function, while it satisfies a 

collection of feasibility constraints. The objective function expresses overall 

(modeled) system performance, such as profit, utility, loss, risk, or error. Constraints 

originate from physical, technical, economic or possibly some other considerations. 

In the case of a possibly quite complex nonlinear system description, the associated 

decision model may – and frequently will - have multiple local optimal solutions. In 

most realistic cases, the number of such local solutions is not known a priori, and the 
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quality of local and global solutions may differ substantially. Sometimes the only 

information available is given computationally, i.e., only the function value is 

available, the derivative is either not available or is very expensive to compute. 

Therefore, these decision models can be very difficult, and standard optimization 

strategies may not be directly applicable to solve them. Hence, one needs to rely on 

other reliable global optimization (GO) concepts and techniques. 

1.2. Categories of Global Optimization Problems 

Global Optimization (GO) can be defined as the task of finding the absolutely best set 

of parameters to optimize an objective function. In general, there can be solutions that 

are locally optimal only but not globally optimal. Consequently, global optimization 

problems are typically quite difficult to solve analytically; in the context of 

combinatorial problems, they are often NP-hard. Global optimization problems fall 

within the broader class of Nonlinear Programming Problems (NLP).  

A constrained optimization problem (COP) is defined by an objective function, 

f(x1,…,xn) to be maximized over a set of variables, V={ x1,…,xn }, with finite 

continuous domains for each variable xi, i =1,…,n, the domain is defined as:             

Xi  = {xi : a ≤ xi ≤ b}, where a, b ∈ IR  that are restricted by a set of constraints,       

C={ c1,…,cp } where p =  k + m and k, m are number of inequality and equality 

constraints respectively. 

Constraints in C are linear or nonlinear equations or inequalities that are represented 

as in equation (1.1): 

gi(x1,…, xn) ≤ 0, ∀i =1,…, k. 

hj(x1,…, xn) = 0, ∀ j =1,…, m. 

(1.1) 
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An optimal solution of a COP is an element (x*) of the search space                           

X (X = X1×…×Xn), that meets all the constraints, and whose objective function value, 

f(x*) ≥ f(x) for all consistent elements x∈ X. 

The generic COP model can be represented as: 

Objective function: maximize ƒ(x) 

Subject to a set of constraints: 

gi (x) ≤ 0, ∀ i = 1,…, k (Inequality constraints) 

hj (x) = 0, ∀ j = 1,…, m (Equality constraints) 

Search region (box): x ∈X ⊆ IR n 

ƒ(x): X ⊆ IR n→ IR, is the objective function, and can be convex or non-convex and 

linear or nonlinear functions.  

The constraints can be of convex or non-convex type restricting over the domain X. 

The COP is a Bound Constrained Optimization Problem (BCOP), if the constraints 

gi(x) and hj(x) are absent. 

The COP is a Continuous Constraint Satisfaction Problem (CCSP), if objective 

function ƒ(x) is absent.  

The basic concepts of neighborhood, feasible point, local maximum, and global 

maximum are defined as follows (Wah and Wang 1999): 

Definition 1.1. )(xN , the neighborhood of point x in variable space X, is user 

defined set of points {x′ ∈X} such that x∉ )(xN  and that )()( xNxxNx ′∈⇔∈′ . 

Neighborhoods must be defined such that any point in the finite search space is 

reachable from any point through traversals of neighboring points.  

(1.2) 
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Definition 1.2. Point x ∈ X is called a feasible point for equation (1.1), if x satisfies 

all the constraints, i.e., gi(x) ≤ 0 ∀  i =1,…,k and hj(x) = 0 ∀ j = 1,…, m.  

Definition 1.3. A local maximum for equation (1.2), is defined as a point x′ such that 

f(x′)  ≥  f(x) ∀ x ∈ X ∩ Nε(x′). Here ε > 0 and Nε(x′) is an ε -neighborhood around x′ 

defined by Nε(x′) = {x | ||x − x′|| <ε}. 

Definition 1.4. Point x* ∈ X is called a global maximum for equation (1.2), iff a) x* 

is a feasible point, and b) for every feasible point x ∈ X ⊆ IR n,  f(x*)  ≥  f(x). 

Optimization techniques can be classified into two broad categories: local 

optimization and global optimization methods used in different fields of research. 

Efficient local optimization methods exist in the literature. It is harder to develop 

efficient Global Optimization methods. 

1.3. Global Optimization Methods 

The global optimization methods are broadly divided into deterministic and 

probabilistic global optimization methods.  

a. Deterministic Global Optimization Methods: 

Many deterministic methods have been developed in the past. Some of them apply 

deterministic heuristics, such as modifying the search trajectory in trajectory methods 

and adding penalties in penalty-based methods, to bring a search out of a local 

maximum. Other methods, such as branch-and-bound and interval methods partition a 

search space recursively into smaller subspaces and exclude regions containing no 

optimal solution. These methods do not work well when the search space is too large 

for deterministic methods to cover adequately. 

Deterministic global optimization methods include covering methods, such as 

interval-based method, which are branch and bound method (Moore 1966, Ratschek 
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and Rokne 1988, Neumaier 1990, Hansen 1992) and generalized descent methods. 

Almost all the algorithms designed for solving constrained optimization problems and 

continuous constraint satisfaction problems are derived from the bound constrained 

optimization problems. However, there is a very limited amount of contribution made 

in solving the COP.  

Cleary (1987) first proposed interval constraints for solving continuous constraint 

satisfaction problems. His approach associates propagation and search techniques 

developed in artificial intelligence and interval analysis based methods. However, 

Symbolic-Interval cooperation techniques are one of the most commonly used 

techniques in solving CCSP.  The symbolic part in the cooperation deals only with the 

representation of the constraint expression and interval analysis computes the verified 

enclosures of the solution sets (Granvilliers et al. 2001). 

A very limited amount of research is carried out in Symbolic-Interval cooperation 

approaches to handle non-polynomial CCSP problem (Granvilliers et al. 2001, 

Granvilliers and Benhamou 2006). This motivates in solving CCSP of non-

polynomial type.  

Covering methods (Evtushenko et al. 1992, Baritompa and Cutler 1994) are reliable 

since, to the extent they work, they have built-in guarantees of solution quality. 

However, they require some global properties of the optimization problem, such as 

Lipschitz condition. In the worst case, covering methods take an exponential amount 

of work. Many of the heuristic techniques used for searching global solutions can be 

adapted to or combined with branch and bound approach to take advantage of 

structural insights of specific applications.  
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Generalized descent methods (Anderson and Walsh 1986, Schaffler and Warsitz 

1990) continue the search trajectory every time a local solution is found. Their 

problem is that as more local minima are found, the modified objective function 

becomes more difficult to minimize.  

b. Probabilistic Global Optimization Methods: 

Probabilistic global optimization methods rely on probability to make decisions. The 

simplest probabilistic algorithm uses restarts to bring a search out of a local maximum 

when little improvement can be made locally. Advanced methods use more elaborate 

techniques. Probabilistic global optimization methods are classified into clustering 

methods (Törn 1973, Boender et al. 1982, Törn and Viitanen 1992), random search 

methods such as single-start (Zabinsky and Smith 1992), multi-start (He and Polak 

1993), random line search, adaptive random search, genetic algorithms, simulated 

annealing, and methods based on stochastic models for example, Bayesian methods. 

Genetic algorithms (Goldberg 1989, Michalewicz 1994) and simulated annealing 

(Romeijn and Smith 1994) are the two popular stochastic global optimization 

methods. Genetic algorithms make use of analogies to biological evolution by 

allowing mutations and crossovers between candidates of good local optima in the 

hope to derive even better ones. However, simulated annealing takes its intuition from 

the fact that heating and slowly cooling (annealing) a piece of metal brings it into 

more uniformly crystalline state, which is believed to be the state where the free 

energy of bulk matter takes its global minimum. 

More detailed review over the above solution approaches are available in Pardalos 

and Rosen (1987), Ratschek and Rokne (1988), Torn and Zilinskas (1989), Neumaier 

(1990), Floudas and Pardalos (1992), Horst and Pardalos (1995), Floudas and 
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Pardalos (1996), Grossmann (1996), Pinter (1996), Horst et al. (2000), Horst and Tuy 

(2003), Neumaier (2004), and so on. 

1.4. Objective and Scope  

The research objective of this thesis is to develop a reliable and generic approach that 

can deal with the following global optimization (non-convex and nonlinear) problems 

defined in equation (1.2): 

 Bound constrained optimization problem (BCOP) 

 Numeric / Continuous constraint satisfaction problem (CCSP) 

 Constrained optimization problem (COP) 

In BCOP, partitioning methods utilizing Interval Arithmetic are powerful techniques 

that produce reliable results. Subdivision direction selection is a major component of 

partitioning algorithms and it plays an important role in convergence speed. The 

subdivision rules proposed up to date is based on criteria such as the width of variable 

intervals (Rule A and D), or estimated function improvement by selected variables 

(gradient information such as Rule B, C and E). The performance of such rules is 

assessed extensively on standard test problems (Ratz and Csendes 1995, Csendes and 

Ratz 1996, Csendes and Ratz 1997, Csendes et al. 2000) resulting in the general 

conclusion that gradient based rules work much better.  

Here, a new subdivision direction selection scheme is proposed that uses symbolic 

computing in interpreting interval arithmetic operations. We call this approach 

Interval Inference Rule (IIR). IIR targets the reduction of interval bounds of pending 

boxes directly by identifying the major impact variables and re-partitioning them in 

the next iteration. This approach speeds up the interval partitioning algorithms 

because it targets the pending status of sibling boxes produced. The proposed IIR 
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enables multi-section of two major impact variables at a time. Also, the new 

subdivision does not need any form of gradient information for the selection of 

subdivision directions. The efficiency of IIR is illustrated on well-known bound 

constrained test functions and compared with established subdivision direction 

selection methods from the literature.   

In CCSP and COP, a cooperative solution methodology that integrates Interval 

Partitioning algorithms (IP) with a local search, Feasible Sequential Quadratic 

Programming (FSQP), is presented as a technique to enhance the solving of CCSP 

and COP. FSQP is invoked using a special search tree management system developed 

to increase search efficiency in finding feasible solutions and global optima of a 

CCSP and COP respectively.  

In this framework, a new symbolic method is introduced for selecting the subdivision 

directions that targets immediate reduction of the uncertainty related to constraint 

infeasibility in child boxes. This subdivision method is compared against two 

previously established partitioning rules (also parallelized in a similar manner) used in 

the interval literature and shown to improve the efficiency of IP. Further, the 

proposed tree management system is compared with tree management approaches that 

are classically used in IP. The whole method is compared with the published results 

of established symbolic-numeric methods and other established software for solving 

CCSP and COP on a number of state-of-the-art benchmarks respectively.  

The scope of this research is to 

 develop a general Interval Partitioning Approach with special tree 

management techniques. 

 integrate a new and efficient subdivision selection rule (IIR) that transforms 
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function expressions into workable trees (binary tree) on which sub-expression 

intervals can be numerically propagated to identify major impact variables for 

re-partitioning. 

1.5. Outline of the Thesis 

The organization of thesis is follows: Chapter 2 outlines the detailed literature related 

to this research, overview on Interval Arithmetic and the basic notation, and overview 

and motivation behind selecting the Feasible Sequential Quadratic Programming 

(FSQP) as the local search method. Chapter 3 briefly reviews the existing tree 

management systems and the new proposed tree management used in solving CCSP 

and COP. Chapter 4 first introduces the different subdivision direction selection 

strategies. Then the details on the new subdivision selection strategy (Interval 

Inference Rule (IIR)) and its convergence proof are presented. The performance of the 

IIR over the existing approaches and software is illustrated in Chapter 5 with 

numerical experiments. Some of the possible application problems and its numerical 

results are presented in Chapter 6 in brief. Chapter 7 summarizes the work done in 

this research and presents some possible extensions. The Appendices A, and B present 

the detailed computational results for CCSP, and complete list of COP benchmarks, 

respectively.   
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Chapter 2 

Literature Review 

General nonlinear optimization problems are difficult to solve due to the large number 

of local maxima in the search space. Good local maxima are difficult to be found by 

the local search methods because they stop at every local maximum. Thus, to obtain 

globally optimal solutions, global optimization techniques have been developed to 

escape from local maxima once the search gets there, and continue the search process 

further. 

2.1. Pervious Work on Global Optimization 

Due to the importance of optimal solutions for engineering, economics and social 

sciences applications, numerous optimization methods have been developed. In the 

recent decades, as computers have become more powerful, numerical optimization 

algorithms have been developed for many applications.  

Solution methods for nonlinear optimization problems can be classified into local and 

global optimization methods. Local optimization methods such as gradient-descent 

and Newton’s methods use local information (gradient or Hessian) to perform 

descents and converge to a local optimum. They can find local optima efficiently and 

work best in uni-modal problems. Global methods, in contrast, employ heuristic 

strategies to look for global optima and do not stop after finding a local optimum 

(Pardalos 1993). A taxonomy on global optimization methods can be found in 

Pardalos and Rosen (1987), Törn and Zilinskas (1989), Floudas and Pardalos (1992), 

Hansen (1992), Horst and Tuy (2003) and so on. It is noted that the gradients and 

Hessians can be used in both local and global methods.  
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2.1.1. Local Search Methods 

Local optimization methods can be broadly classified into Zero-order methods, First-

order methods, and Second-order methods based on the derivative information used 

during search (Shang 1997). 

Zero-order methods do not use derivatives of objective functions during optimization. 

They include simplex search method, the Hooke and Jeeves methods, the Rosenbrock 

method, and conjugate direction method (Powell 1964, Nelder and Mead 1965, 

Chazan and Miranker 1970, Dennis Jr. and Torczon 1991, Lewis et al. 2000). 

First-order methods use first-order derivatives of the objective function during the 

search. They include the gradient-descent method, the discrete Newton’s method, the 

quasi-Newton methods, and conjugate gradient methods. The gradient-descent 

method performs a linear search along the direction of the negative gradient of the 

minimized function (Arminjo 1966, Wolfe 1967, Sturua and Zavriev 1991, Baldi 

1995). The discrete Newton’s method approximates the Hessian matrix by the finite 

difference of the gradient. Quasi-Newton methods approximate the curvature of the 

nonlinear function using information of the function and its gradient only, and avoid 

the explicit evaluation of the Hessian matrix (Broyden 1972, Bazaraa et al. 1993). 

Conjugate gradient methods combine the current gradient with the gradients of 

previous iterations and search direction to form the new search direction. They 

generate search directions without storing a matrix (Hestenes 1980, Kinsella 1992, 

Bazaraa et al. 1993). 

Second-order methods make use of second-order derivatives. They include Newton’s 

methods, Levenberg-Marquardt’s method, and trust region methods (Dennis and 

Schnabel 1983, Bazaraa et al. 1993). In Newton’s method, the inverse of Hessian 
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matrix multiplies the gradient, and a suitable search direction is found based on a 

quadratic approximation of the function. Newton’s method converges quadratically if 

the initial point is close to a local optimum. Levenberg-Marquardt’s method and trust 

region methods are modifications of Newton’s method. However, line search or trust 

region algorithms converge when their starting point is not close to an optimum. Line 

search and trust region techniques are suitable if the number of variables is not too 

large. Truncated Newton’s methods are more suitable for problems with a large 

number of variables. They use iterative techniques to obtain a direction in a line 

search or a step in a trust region method. The iteration is stopped when a termination 

criterion is satisfied.    

The sequential quadratic programming (SQP) algorithm is a generalization of 

Newton's method for bound constrained optimization in that it finds a step away from 

the current point by minimizing a quadratic model of the problem (Shanno and Phua 

1989, Zhou and Tits 1996, Lawrence et al. 1997, Murray 1997, Lawrence and Tits 

2001). 

Local search methods converge to local optima. For some applications, local optima 

may be good enough, particularly when the user provides a good starting point for 

local optimization algorithms. However, for many applications, globally optimal or 

near-optimal solutions are desired. 

In a nonlinear optimization, objective functions are multimodal with many local 

optima. Local search methods converge to local optima close to the initial points. 

Therefore, the solution quality depends heavily on the initial point selected. When the 

objective function is highly nonlinear, local search methods may return solutions 

much worse than the global optima when starting from a random point. 
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Some of the software codes developed using local search techniques are as follows: 

GAMS / Conopt   

Algorithms: 

Steepest Descent, Quasi-Newton, Sequential Linear Programming, Sequential 

Quadratic Programming using the new second order information. The SQP sub-

method uses Reduced Hessians (when there are few superbasics) or Conjugate 

Gradients (when there are many superbasics) (Drud 1996). 

GAMS / Minos  

Algorithms: 

GAMS / Minos solves linear programs using a reliable implementation of primal 

simplex method (Dantzig 1963). However, it solves nonlinear programs using 

reduced-gradient algorithm (Wolfe 1962, Wolfe 1967) combined with a quasi-Newton 

algorithm (Murtagh and Saunders 1978). 

GAMS/ Snopt 

Algorithms: 

GAMS / Snopt applies primal simplex method (Dantzig 1963) for linear programs. For 

both linearly and nonlinearly constrained problems, GAMS / Snopt applies a sparse 

sequential quadratic programming (SQP) method (Gill et al. 1997), using limited-

memory quasi-Newton approximations to the Hessian of the Lagrangian. 

To overcome the deficiencies in local search methods, global optimization methods 

have been developed with global search mechanisms. Global search methods use local 

search methods to determine local maxima, and focus on bringing the search out of a 

local maximum once it gets there. 
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2.1.2. Global Search Methods 

Global search algorithms are abundant in global optimization literature, for example, 

findings of Pardalos and Rosen (1987), Horst and Pardalos (1995), Pinter (1996), 

Horst et al. (2000), and Özdamar and Demirhan (2001) are important for reviews and 

comparisons. These algorithms can be classified as deterministic or probabilistic 

algorithms. Probabilistic methods evaluate the objective function at randomly 

sampled points from the solution space. Deterministic methods, on the other hand, 

involve no element of randomness.  

Alternatively, global optimization algorithms can also be classified as reliable and 

unreliable. Reliable methods guarantee solution quality while unreliable methods do 

not. Probabilistic methods, including simulated annealing, clustering, and random 

searching fall into the unreliable category. However, Unreliable methods usually have 

the strength of efficiency and better performance in solving large-scale problems. 

Deterministic methods can be further classified into covering methods, and 

generalized descent methods. Probabilistic methods can also be further divided into 

clustering methods, random search methods, and methods based on stochastic models.  

1.  Deterministic Methods 

Numerous deterministic methods have been developed in the past. Some of them 

apply deterministic heuristics, such as modifying the search trajectory in trajectory 

methods and adding penalties in penalty-based methods, to bring a search out of a 

local maximum. Other methods, like branch-and-bound and interval methods, 

partition a search space recursively into smaller subspaces and exclude regions 

containing no optimal solution. These methods do not work well when the search 

space is too large for deterministic methods to cover adequately. 
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a. Covering Methods 

Covering methods detect sub regions not containing the global maximum, and 

exclude them from further consideration. Covering methods provide guarantee of 

solution quality, and approximate the global solution by iteratively using tighter 

bounds (Evtushenko et al. 1992, Hansen 1992, Moore et al. 1992, Horst and Tuy 

2003). Obtaining a solution with guaranteed accuracy implies an exhaustive search of 

the solution space for the global maximum. Thus, these methods can be 

computationally expensive; with a computation time that increases dramatically as the 

problem size increases (Baritompa 1993, Baritompa and Cutler 1994).  

Branch and bound methods is one of the best examples for covering method. They 

evaluate upper bounds on the objective function of subspaces. They allow an 

assessment of the quality of the local optima obtained. Combining with 

computationally verifiable sufficient conditions for global optimality, they allow one 

to actually prove global optimality of the best solution obtained. 

Branch and bound methods can be further classified into algorithms based on interval 

methods, algorithms based on certain prior assumptions on functions, such as 

Lipschitz functions and other methods. 

Interval Methods 

Interval Partitioning Algorithms (IPA) use interval arithmetic (Moore 1966) to 

produce reliable results for constrained and bound constrained optimization (Hansen 

1992, Ratschek and Rokne 1995). Due to their reliability, interval applications take 

place in a wide scope of scientific fields (Kearfott and Kreinovich 1996). In bound 

constrained global optimization problems, IPA subdivides the given domain into 

smaller subspaces (boxes) that are assessed according to their function range 
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calculated by using an approximating inclusion function. Based on the function range 

bounds and a known best solution that is updated during the search, some subspaces 

are deleted reliably, because they cannot hold the global optimum solution (Pinter 

1992, Hammer et al. 1993). Subdivision continues in remaining boxes so that the 

location of the global optimum solution can be enclosed within a small box of a given 

tolerance. The final report contains all such boxes in the given function domain. 

Convergence rate of IPA depends on the use of accelerating devices such as 

monotonicity and concavity tests that help in discarding boxes (Ratschek and Rokne 

1988, Ratschek and Rokne 1995) and on the selection of subdivision direction 

(variable whose domain is to be re-partitioned) (Moore 1966, Neumaier 1990, Hansen 

1992, Ratz and Csendes 1995, Berner 1996, Csendes and Ratz 1996, Csendes and 

Ratz 1997, Csendes et al. 2000). In IPA, the latter issue has a major impact on 

convergence rate because reducing the domain size of a specific variable might 

enhance the reduction in the overestimated function range of the sibling boxes to a 

significant degree. Thereby, boxes that cannot be discarded due to their promising 

overestimated upper bounds may become disposable in a few re-partitioning iterations 

with a good subdivision direction selection strategy.  

Subdivision rules proposed up to date are based on criteria such as the width of 

variable intervals, for example, Rule A (Moore 1966, Ratschek and Rokne 1988, Ratz 

and Csendes 1995, Berner 1996, Csendes and Ratz 1996, Ratz 1996, Csendes and 

Ratz 1997, Csendes et al. 2000) and Rule D (Hammer et al. 1993, Ratz and Csendes 

1995, Berner 1996, Csendes and Ratz 1996, Ratz 1996, Csendes and Ratz 1997, 

Csendes et al. 2000), or estimated function improvement by selected variables that is 

gradient information (Rule B (Hansen 1992, Ratz and Csendes 1995, Csendes and 

Ratz 1996, Ratz 1996, Berner 1996, Csendes and Ratz 1997, Csendes et al. 2000), 
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Rule C (Ratz and Csendes 1995, Berner 1996, Csendes and Ratz 1996, Ratz 1996, 

Csendes and Ratz 1997, Csendes et al. 2000) and Rule E (Ratz and Csendes 1995, 

Berner 1996, Csendes and Ratz 1996, Ratz 1996, Csendes and Ratz 1997, Csendes et 

al. 2000). The performance of such rules is assessed extensively on standard test 

problems (Ratz and Csendes 1995, Csendes and Ratz 1996, Csendes and Ratz 1997, 

Csendes et al. 2000) resulting in the general conclusion that gradient based rules work 

much better.  

In Berner (1996), these rules are converted into parallel multi-section rules by taking 

the first k number of variables from a list of variables sorted according to the rule 

(called k-best strategy here). Multi-section (subdivision of some variables in parallel) 

and multi-splitting (subdivision of a single variable’s width into s > 2 pieces) 

approaches are proposed in Csallner et al. (2000a, 2000b). The latter studies 

investigate the efficiency related to specific values of s with regard to each 

subdivision rule. Casado et al. (2000) propose multi-section / multi-splitting hybrids 

by subdividing intervals of all variables into two or more pieces (sn) in parallel.  They 

propose a parametric method that involves the comparison of a box assessment 

criterion with given constants used in deciding which hybrid parallel scheme should 

be used for a given box. In Casado et al. (2000) the authors use the box assessment 

criterion as a box selection rule and utilize multi-section subdivision rules based on k-

best strategy found in Berner (1996). 

Further, the direction selection rules are classified into priori direction selection rules 

and posteriori selection rules. The rules based width of variable intervals and gradient 

information is classified as the priori selection rules (Csendes et al. 2000). The rules 

developed for understanding the functioning of these subdivision direction selections 
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are called as posteriori selection rules such as Rule 1, Rule 2, Rule 3 and Rule 4 

(Csendes et al. 2000).  

Ratz (1994, 1997) investigates the impact of gap-treating and box-splitting techniques 

on subdivision direction selection rules. The box splitting techniques can be divided 

into Brute force interval splitting, Selective interval splitting, Selective interval 

splitting with midpoint evaluation, Exploitation of single parameter occurrence, 

Exploitation of partial N-monotonicity, and Generalized Splitting Algorithm (GSA) 

(for an overview, see Lüthi and Lladó 2003).  

Accelerating devices are introduced to speedup the convergence of IPA. The midpoint 

test (Ratz 1992, Hammer et al. 1993), which evaluates the middle point of a box, is 

used to discard the boxes whose upper bounds are less than the midpoint’s function 

value. The monotonicity test assumes that the given function is continuously 

differentiable (Ratschek and Rokne 1988, Vaidyanathan and Halwagi 1994, Ratschek 

and Ratschek 1995, Markót 2003). The other accelerating device includes non-

convexity test and other discarding tests (Hansen 1980, Ratschek and Rokne 1988, 

Vaidyanathan et al. 1994, Markót 2000, Fernandez and Pelegrin 2001, Markót et al. 

2006). More detailed review over the above accelerating devices is available in 

Ratschek and Rokne (1988), Vaidyanathan and Halwagi (1994), Ratschek and 

Ratschek (1995), Markót (2003). The box can be abdicated when this test is satisfied. 

However, this case is only true when dealing with bound constrained optimization. 

For constrained optimization, this test alone is not sufficient to discard a box. 

Moreover, the assumption of ‘continuously differentiable’ cannot always be met in 

practice. 

Convergence rate of IPA also depends on the order of boxes to be processed 

(Ratschek and Rokne 1988, Csendes and Pinter 1993, Csallner and Csendes 1996, 
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Csendes 2001). In interval methods, the order of boxes to be processed plays an 

important role; there exist different strategies for selecting the next box to be 

subdivided. Some strategies have been used in interval methods, such as the strategy 

to select the best upper bound, i.e., Moore-Skelboe rule (Skelboe 1974, Ratschek and 

Rokne 1988), the oldest interval from the list, i.e., Hansen rule (Hansen and Sengupta 

1980, Hansen 1992) and so on. Moore-Skelboe rule ensures a quicker algorithm than 

Hansen rule. Jansson (1994) studies the combination of oldest first and best first 

selection strategy. Berner (1996) studied the influence of different strategies for 

selecting the next box for subdivision in IPA.  Csendes (2001), and Casado et al. 

(2001a, 2001b) propose some more heuristic selection strategies, which utilize the 

information of global optima in solving bound constrained optimization problems. 

Termination criterion also plays an important role in IPA to obtain solutions, which 

are close to the actual solutions.  Kearfott and Walster (2000) introduce new 

termination criteria, i.e., thickness stopping criterion, which can be used for global 

optimization algorithms using interval analysis. The other stopping criterion is a 

heuristic domain and range stopping criteria, which is used to determine the accuracy 

tolerances (Moore 1966, Neumaier 1990, Hansen 1992, Ratscheck and Rokne 1995). 

Theoretically, IPA has no difficulties in dealing with the COP; however, interval 

research on the COP is relatively scarce when compared with bound constrained 

optimization. Robinson (1973) uses interval arithmetic only to obtain bounds for the 

solution of the COP, but does not attempt to find the global optimum. Hansen and 

Sengupta (1980) first use IPA to solve the inequality COP. A detailed discussion on 

interval techniques for the general COP with both inequality and equality constraints 

is provided in Ratschek and Rokne (1988) and Hansen (1992), and some numerical 
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results using these techniques have been published later (Wolfe 1994, Kearfott 

1996a).  

Conn et al. (1994) transform inequality constraints into a combination of equality 

constraints and bound constraints and combine the latter with a procedure for 

handling bound constraints with reduced gradients. Computational examination of 

feasibility verification and the issue of obtaining rigorous upper bounds are discussed 

in Kearfott (1996d) where the interval Newton method is used for this purpose. In 

Hansen and Walster (1993), interval Newton methods are applied to the Fritz John 

equations that are used to reduce the size of sub-spaces in the search domain without 

bisection or other tessellation. Experiments that compare methods of handling bound 

constraints and methods for normalizing Lagrange multipliers are conducted in 

Kearfott (1996b). Dallwig et al. (1997) propose software for solving bound 

constrained optimization and the COP (so called GLOPT).  GLOPT uses a branch and 

bound technique to split the problem recursively into subproblems that are either 

eliminated or reduced in size.  The authors also propose a new reduction technique for 

boxes and novel techniques for generating feasible points. More recently, Kearfott 

(2003) presents the GlobSol, which is IP software that is capable of solving bound 

constrained optimization problems and the COP.  

Markót (2003) developed a new IP for solving the COP with inequalities where new 

adaptive multi-section rules and a box selection criterion are presented (Markót et al. 

2006). Kearfott (2006) provides a discussion and empirical comparisons of linear 

relaxations and alternate techniques in validated deterministic global optimization. 

Empirical results show that linear relaxations are of significant value in validated 

global optimization. Finally, in order to eliminate the subregion of the search spaces, 

Kearfott (2005) proposes a simplified and improved technique for validation of 
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feasible points in boxes, based on orthogonal decomposition of the normal space to 

the constraints. In the COP with inequalities, a point, rather than a region, can be 

used, and for the COP with both equalities and inequalities, the region lies in a 

smaller-dimensional subspace, giving rise to sharper upper bounds. More detailed 

review over the methods for constrained optimization is available in Ratschek and 

Rokne (1988), Hansen (1992), Ratschek and Rokne (1995), Kearfott (1996c) and so 

on. 

For Continuous Constraint Satisfaction Problems: 

CCSP’s are solved by discarding inconsistent elements of the search space (this 

technique is known as a filtering technique). One of the main difficulties of filtering is 

that parts of the search space can be discarded only by proving that they do not 

contain any feasible solution. In particular, unlike when solving constrained 

optimization problems, filtering for CCSP cannot take advantage of a bound on the 

objective (Branch and Bound approach) upon a search space and discard it using this 

bound. It is hard to tackle the general nonlinear CCSP with computer algebra systems. 

In general, numeric algorithms cannot guarantee completeness (some solutions may 

be missed) and reliability of the solution set (the search might result with an infeasible 

response, despite the fact that a feasible solution exists). Neumaier et al. (2005) 

compare the solver performance in terms of reliability, efficiency, and so on among 

major complete/global and incomplete/local solvers using an extensive set of 

constrained optimization problems and CCSP. As far as solving CCSP is concerned, 

the reliability of interval-symbolic solver ICOS (Lebbah 2003) is praised, however, 

with a note on its slow convergence. Results on these benchmarks are reported for the 

identification of a first feasible solution, rather than all feasible solutions.    
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Completeness and reliability can be achieved by using interval methods. Intervals 

were first used (Moore 1966) to take rounding errors into account, guaranteeing thus 

reliability. In addition to this, interval-based methods were proved to be complete 

(Neumaier 1990, Hansen 1992, Ratschek and Rokne 1995). A drawback of interval 

methods is the dependence of a function interval on the syntactical form of the 

constraints /expressions. The latter affects the performance of the interval-based 

methods. This problem of intervals is known as the dependency problem. Fortunately 

enough, in some specific cases, it was shown that the input forms could be converted 

into more manageable/solvable expressions by different methods (Buchberger 1985, 

Rump 1992, Granvilliers 1998, Ceberio and Granvilliers 2002).  

Interval techniques for the CCSP are basically Branch and Prune techniques where 

branching consists in splitting the search space into smaller boxes, and pruning in 

reducing the variables’ domains. Splitting consists in bisecting the domains of 

selected variable(s) in a given search space (box), which results in child boxes. 

Variable selection is made according to different heuristics, such as largest width first 

(Rule A) or largest rate of change (product of absolute value of the corresponding 

Jacobian element and width of the variable- Smear rule by Kearfott and Manuel 

1990). 

Precision test checks out the precision of the current box. The test succeeds if the 

precision of the current box is smaller than or equal to an infinitesimally number ε           

(ε > 0.0). The splitting step divides the current box along one dimension. The splitting 

step can be performed using Rule A, Rule B, Rule C, Rule D, Smear Rule and so on 

given in the above section.   
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In the Branch and Prune approach, pruning test (or filtering) can be carried out in 

three basic ways. 

The first method is the simplest one and involves interval evaluation of each 

constraint. If the interval of any constraint does not contain a root (namely, the zero), 

the box is discarded. Convergence of this method is slow due to overestimation of 

inclusion function ranges that leads to repetitive bisection of boxes.  

The second method is the classical global pruning approach, the interval Newton 

method (Moore 1966, Hansen 1992). Interval Newton is based on the iterative 

Newton step involving the Jacobian matrix that represents interval rate of change of 

all constraints in the system. Hence, it may be called a global filtering method. 

Newton steps may result in variable domains that do not intersect with the box’s 

domains (infeasible search space-to discard), it may narrow variable domains in a 

given box, or, it might fail in case of multiple roots. Convergence rate to a sufficiently 

small enclosure of the root is quadratic if a feasible solution exists in the given box.  

The third and most important category of pruning approaches is that of local 

consistency methods, which aim to narrow variable domains by using their functional 

relationships in constraints, taking one constraint and one variable at a time. Such 

methods remove parts of the search space of variables that are inconsistent with the 

domains of other variables taking place in the same constraint. Once the domains of 

all variables in a given constraint are screened for consistency, reduced domains are 

substituted into other constraints sharing the variables whose domains have just been 

reduced. These steps result in a constraint propagation algorithm (Jaulin et al. 2001). 

The sequence in which constraints are handled in constraint propagation plays an 

important part in the efficiency of the method (L’homme et al. 1998).  Two major 

types of consistency techniques exist, hull consistency and box consistency. Hull 
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consistency (Cleary 1987, Benhamou et al. 1994, Benhamou and Older 1997) is 

basically constraint inversion that uses relational interval arithmetic. Hull consistency 

is applicable to simple constraints due to difficulties arising during the inversion of 

complex expressions and also due to the dependency problem that takes place in the 

case of multiple occurrences of the same variable in a constraint expression. The 

dependency problem is partially eliminated by the box consistency technique 

(Benhamou et al. 1994, Van-Hentenryck et al. 1997a) where consistency of gradually 

expanding outermost sub-domains (starting from lower and upper bounds of domains) 

is identified by an iterative method that checks constraint feasibility by interval 

evaluation. When constraint propagation does not reduce a variable interval 

substantially, the branching module bisects its domain and inserts the two new sub-

spaces (boxes) into the list of boxes waiting to be assessed for feasibility. Hull and 

box consistency methods work in conjunction with each other and with interval 

Newton method to improve overall efficiency. A comparison of consistency 

techniques and cooperative strategies are found in Benhamou et al. (1999), and 

Granvilliers (2001). The other consistency technique is higher order local consistency 

(Freuder 1978, Sam-Haroud and Faltings 1996, Lebbah and Lhomme 2002) deriving 

from k-consistency such as 3B Consistency, kB-Consistency (Lhomme 1993), and 

box (2)-Consistency (Puget and Van Hentenryck 1998).  

An extensive discussion on how symbolic-interval cooperation can be carried out by 

appropriate constraint partitioning is given in Granvilliers et al. (2001). Most of the 

research up to date is focused on constraint representation such as Horner Rule, 

Factorization, Gröbner basis, and so on (Ceberio and Granvilliers 2002). These 

symbolic-interval cooperation techniques use interval analysis for computing verified 

enclosures of solution sets. Thus, research carried out till date is more promising to 
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the polynomial functions then the non-polynomial functions. Developing a generic 

approach for solving polynomial and non-polynomial functions is a worthwhile 

contribution to this field of research. 

Schichl and Neumaier (2005) propose a new technique for global optimization, which 

is a combination of interval analysis on directed acyclic graph and constraint 

propagation. Vu et al. (2004) propose a new simple algorithm, which coordinates 

constraint propagation and exhaustive search for solving numerical constraint 

satisfaction problems (Vu et al. 2003).    

ALIAS and ICOS are software, which is capable of finding all feasible solutions for a 

given CCSP. COPRIN project web page publishes results obtained through the usage 

of ALIAS, a comprehensive set of libraries that include 2B/3B box and hull 

consistency variants, linearization (Yamamura et al. 1998), interval Newton, and 

unicity operators, and numerical and interval root approximations for univariate 

polynomials  (http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-

C++.html). ALIAS is an advanced C++ library of symbolic-interval algorithms that 

deal with CCSP’s.  

Several interval based software have been developed, and most of them being 

referenced on the interval computations webpage (http://www.cs.utep.edu/interval-

comp/intsoft.html). Interval-based constraint satisfaction techniques have been 

implemented in several constraint logic programming (CLP) systems, such as Eclipse 

(Meier and Schimpf 1993), Oz (Smolka 1995), Mozart (Mozart Consortium 1999) 

and Prolog IV (PrologIA 1996). Constraints are embedded into CLP programs, using 

Horn clauses. The operational semantics based on term unification and constraints 

solving techniques. 
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Pascal Van Hentenryck and his colleagues developed Numerica (Van Hentenryck et 

al. 1997a), which is the integration of constraint satisfaction techniques and interval 

methods. However, Numerica is not currently available, but some of their constraints 

solving functionalities have been implemented in the commercial object-oriented 

library ILOG Solver (ILOG 2001). RealPaver (Granvilliers and Benhamou 2006) is a 

C++ library for solving nonlinear systems of equations, implementing a fine-grained 

algorithm based on constraint satisfaction techniques. On the COCONUT web page, 

an extensive testing has been carried out for box-constrained and constrained 

optimization problems in addition to CCSP’s. The solvers that are compared on the 

CCSP problems include ALIAS, COCONUT, ICOS (Lebbah 2003) and QUAD (for 

two problems reported).  

More detailed review over the above solution approaches for CCSP is also available 

in Schichl (2003), and Vu (2005). 

Some of the software codes or platforms developed using local search techniques are 

as follows: 

1. COCONUT (Schichl 2003, Schichl 2004) 

The COCONUT project (Schichl 2003, Schichl 2004) aims at the integration of 

existing approaches to continuous global optimization and constraint satisfaction. The 

solution algorithm is an advanced branch-and-bound scheme which proceeds by 

working on the search graph, a directed acyclic graph of search nodes (Schichl and 

Neumaier 2005), each representing an optimization problem, or a model. The several 

state of the art techniques already provided are Donlp2 (Spellucci 2002), Box 

covering solver (BCS), STOP (a heuristic starting point generator), Karush-John 

Condition generator using symbolic differentiation, Point Verifier for verifying 
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solution points, Exclusion Box generator, calculating an exclusion region around local 

optima (Schichl and Neumaier 2004), Interval constraint propagation (Petrov and 

Benhamou 2002), Linear Relaxation, CPLEX (a wrapper for the state of the art 

commercial linear programming solver by ILOG 

(http://www.ilog.com/products/cplex/)), Basic Splitter, and Convexity detection for 

simple convexity analysis. 

2. Realpaver (Granvilliers and Benhamou 2006) 

The constraint solving engine of RealPaver implements a branch and prune algorithm. 

Given a CCSP, a set of boxes that contain all the solutions of the CCSP is computed 

through splitting and reducing each box. The reduction eliminates inconsistent values 

from domains by means consistency techniques. The splitting step generates sub-

boxes in order to separate the solutions. 

3. Numerica (Van Hentenryck et al. 1997a) 

Branch and bound is algorithm for constrained optimization (with mathematically 

rigorous results). This code (no longer available) was based on branching and box 

reduction using interval analysis and constraint satisfaction techniques. The box 

reduction and interval analysis algorithms of Numerica are now available in ILOG 

Solver.  

4. GlobSol (http://interval.louisiana.edu/GlobSol/download_GlobSol.html, Kearfott 

2003) 

This is a Branch and bound code for global optimization with general factorable 

constraints, with rigorously guaranteed results (even round off is accounted for 

correctly). GlobSol is based on branching and box reduction using interval analysis to 

verify that a global maximizer cannot be lost. 
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5. Globopt (Dallwig et al. 1997) 

Globopt is a Fortran77 program for global minimization of a block separable 

objective function subject to bound constraints and block-separable constraints. 

Globopt uses a branch and bound technique to split the problem recursively into 

subproblems that are either eliminated or reduced in their size.  

6. ALIAS (http://www-sop.inria.fr/coprin/) 

ALIAS is a software based on interval analysis and can be used for almost any system 

as long as it is composed of classical mathematical operators. Some algorithms may 

be used only for systems with specific structure such as algebraic, linear, distance, 

systems and so on. ALIAS may also deal with functions that involve determinants of 

matrices, without having to expand the determinants. This is mainly developed for 

solving constraint satisfaction problems. 

7. ICOS (http://www-sop.inria.fr/coprin/ylebbah/icos/index.html, Lebbah et al. 2003) 

ICOS (Interval COnstraints Solver) is a software package for solving nonlinear and 

continuous constraints. It is based on constraint programming and interval analysis 

techniques. This is mainly developed for solving constraint satisfaction problems and 

can find all the solutions for a given CCSP model. 

8. Unicalc (http://www.rriai.org.ru/UniCalc/) 

This is a solver based on interval constraint propagation. It allows tackling nonlinear 

algebraic systems with real and/or integer variables. 
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9. ParaGlobSol (http://happy.dt.uh.edu/~sun/ParaGlobSol.html) 

Parallel/distributed implementations of the interval global optimization Fortran 90 

package GlobSol, which solve global optimization problems with the interval branch-

and-bound algorithm together with interval Newton/generalized bisection method. 

Various software packages developed to support interval arithmetic are: 

1. Profil / Bias (Knuppel 1994) 

http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html 

PROFIL (Programmer's Runtime Optimized Fast Interval Library) is a C++ class 

library supporting the most commonly needed interval and real operations in a user 

friendly way. PROFIL is based on Basic Interval Arithmetic Subroutines (BIAS). The 

development of BIAS was guided by the ideas of Basic Linear Algebra Subprograms 

(BLAS), to provide an interface for basic vector and matrix operations with specific 

and fast implementations on various machines, the latter is frequently provided by the 

manufacturers. The idea of BIAS is to give such an interface for interval operations 

with the objective, very efficient use of the underlying hardware, portability, 

independency of a specific interval representation. 

2. C-XSC (Klatte et al. 1993) 

http://www.rz.uni-karlsruhe.de/~iam/html/language/cxsc/cxsc.html 

C-XSC is a tool for the development of numerical algorithms delivering highly 

accurate and automatically verified results. It provides a large number of predefined 

numerical data types and operators. These types are implemented as C++ classes. 

Thus, C-XSC allows high-level programming of numerical applications in C and C++. 
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Lipschitz Methods 

Lipschitz methods solve global optimization problems in which the objective function 

and constraints are given explicitly and have bound slopes. The algorithm partitions 

feasible space into sub-spaces and conducts assessment for re-partitioning relying on 

assumed knowledge about the rate of change of the function, or the so-called 

Lipschitz constant (Gourdin et al. 1994, Hansen et al. 1995, Horst and Tuy 2003, 

Pinter 1988). In Lipschitz approach, functions are assumed to be continuous and 

smooth with finite slopes around stationary points. Lipschitzian methods guarantee 

convergence to the global optimum only if Lipschitz constant utilized in 

approximating the function is not underestimated. Heuristic estimations of the 

Lipschitz generation are found in Strongin (1978), Meewella and Mayne (1989), and 

Baritompa (1993) whereas exact approaches require the generation of a refined mesh 

to obtain an appropriate Lipschitz constant. It is known that a high degree of 

overestimation in Lipschitz constant results in a very slow convergence rate. 

Obviously, function properties should be known to utilize Lipschitzian approaches, 

and therefore, the problem cannot be considered as black box. 

However, there exist other Lipschitzian approaches that eliminate the necessity of 

specifying the Lipschitz constant whether or not it is estimated or calculated. The 

latter are classified as black box optimization techniques. An example is DIRECT 

(Jones et al. 1993) where the Lipschitz constant is taken as a weighting parameter that 

balances global and local search. Parallel partitioning is conducted on boxes that are 

non-dominated with respect to the two criteria, the first being the box size 

(representing unexplored areas – a global search feature) and the second being the box 

value (representing function fitness – a local search feature).  Efforts are made to 

enhance the computational complexity of DIRECT by using massive parallelism 
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(Watson and Baker 2000). He et al. (2002) propose modifications that involve 

termination and box selection criteria. A limitation of DIRECT is that it requires 

surface smoothness property for convergence.  

Huyer and Neumaier (1999) propose another black box partitioning approach called 

Multilevel Coordinate Search (MCS). MCS performs non-uniform partitioning by 

introducing a partition bias that divides boxes in the vicinity of samples having better 

function values. Similar to DIRECT, MCS also requires a smooth and continuous 

surface in the close neighborhood of the global optimum. 

Pinter (1996) proposes a new powerful algorithm that integrates deterministic and 

probabilistic global and local search within a global partitioning framework. This 

algorithm is used in Lipschitz (-Continuous) Global Optimizer (LGO) development, 

which is a commercial package for solving global optimization problems  (Pinter 

1996, 1997).  

Other Methods 

The other deterministic approaches including branch and bound methods are Al-

Khayyal and Sherali (2000), cutting plane methods (Tuy et al. 1985), outer 

approximation (Horst et al. 1992), primal–dual method (Floudas and Visweswaran 

1993, Ben-Tal et al. 1994), alpha-Branch and Bound approach (Androulakis et al. 

1995), reformulation techniques (Sherali and Tuncbilek 1992, Smith and Pandelides 

1999, Sherali and Wang 2001), interior point methods (Morales et al. 2001, Forsgren 

et al. 2002, Leyffer et al. 2004, Leyffer 2005) and interval methods (Hansen 1992). 

Branch and Bound techniques (B&B) are partitioning algorithms that are complete 

and reliable in the sense that they explore the whole feasible domain and discard sub-

spaces in the feasible domain only if they are guaranteed to exclude feasible solutions 
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and/or local stationary points better than the ones already found. B&B are exhaustive 

algorithms that typically rely on generating lower and upper bounds for boxes in the 

search tree, where tighter bounds result in early pruning of nodes. For expediting 

B&B, feasibility and optimality based variable range reduction techniques (Ryoo and 

Sahinidis 1995, 1996), convexification (Tawarmalani and Sahinidis 2002, 

Tawarmalani and Sahinidis 2004), outer approximation (Burkard et al. 1992) and 

constraint programming techniques in pre- and post-processing phases of branching 

have been developed (Ryoo and Sahinidis 1996). The latter resulted in an advanced 

methodology and software called Branch and Reduce algorithm (Baron, Sahinidis 

1996, Sahinidis 2003).  

Symbolic reformulations / spatial branch-and-bound algorithm, which is another 

variant of B&B for nonconvex optimization problems, is developed with bounds 

tightening, optimization based tightening, and feasibility based tightening tests to 

obtain tighter bounds (Sherali and Tuncbilek 1992, Smith and Pantelides 1996, 1999, 

Smith 1996, Sherali and Wang 2001).  

Surveys on global optimization are abundant in the literature (Pardalos and Romeijn 

2002). 

Some branching codes using Function Values only: 

The codes listed use black box function evaluation routines, and have heuristic 

stopping rules. 

i. DIRECT, Divide Rectangles (in Fortran, by Gablonsky and Kelley 2001, 

Gablonsky 2001) 

gblSolve, a MATLAB 5 implementation of DIRECT 
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DIRECT method uses branching and a Pareto principle for the box selection. Jones et 

al. (1993) implement a simple and efficient global optimization method for bound 

constrained problems using DIRECT method. 

ii. MCS, Multilevel Coordinate Search (Huyer and Neumaier 1999) 

MCS is a branching and sequential quadratic programming algorithm, which can be 

developed using Matlab. However, for a bound constrained global optimization 

problem it uses function values only. 

iii. LGO, Lipschitz Global Optimization (Pinter 1997) 

This is an integrated development environment for global optimization with Lipschtiz 

continuous objective and constraints. LGO is based on branching and estimation of 

Lipschitz constants and interior convex constraints by projection penalties. 

Some Branch and Bound Codes for Continuous Global Optimization: 

The codes listed below use global information generally from required symbolic 

problem input. They have finite termination with guarantee that the global maximizer 

is found; in difficult cases storage or time limits may be exceeded, however, leading 

to appropriate error messages. 

i. GAMS / Baron (Ryoo and Sahinidis 1996, Sahinidis 1996) 

Baron is a general purpose solver for global optimization problems with nonlinear 

constraints and / or integer variables. It is one of the fast specialized solvers for many 

linearly constrained problems. Baron is based on branching and box reduction using 

convex relaxation and Lagrange multiplier techniques. 
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ii. αBB (Adjiman et al. 1998a, 1998b, Androulakis et al. 1995, Adjiman and Floudas 

2001) 

αBB is a branch and bound code for nonlinear programs. It is based on branching and 

bound by convex underestimation, using interval analysis to write nonlinearities in 

DC (difference of convex function) form. 

b. Generalized Descent Methods 

These methods continue the search trajectory every time a local solution is found. 

There are two approaches. First, trajectory methods modify the differential equations 

describing the local-descent trajectory so that they can escape from local maxima 

(Anderson and Walsh 1986, Snyman and Fatti 1987, Diener and Schaback 1990, 

Schaffler and Warsitz 1990, Sturua and Zavriev 1991, Vincent et al. 1992). Their 

advantage is the large number of function evaluations spent in unpromising regions. 

Second, penalty methods prevent multiple determinations of the same local maxima 

by modifying the objective function, namely, by introducing a penalty term on each 

local maximum (Ge and Qin 1987, Cetin et al. 1993). Their problem is that as more 

local maxima are found, the modified objective function becomes more difficult to 

minimize. In existing generalized descent methods, the descent trajectory is modified 

using internal function information, e.g., local maxima along the search. 

Alternatively, deterministic methods can be classified into two categories (Shang 

1997): (a) point-based methods, methods that compute function values at sampled 

points, such as generalized descent methods, and (b) region based methods, methods 

that compute function bounds over compact sets, such as covering methods. Point-

based methods are unreliable, but usually have less computational complexity. 
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Region-based methods are expensive, but can produce rigorous global optimization 

solutions when they are applicable. 

2.  Probabilistic Methods 

Probabilistic global maximization methods rely on probability to make decisions. The 

simplest probabilistic algorithm uses restart to bring a search out of a local maxima 

when little improvement can be made locally. Advanced methods use more elaborate 

techniques. The probabilistic methods are classified into clustering methods, random-

search methods and methods based on stochastic models (Shang 1997). 

a. Clustering Methods 

Clustering analysis (Törn 1977, Boender et al. 1982, Törn and Viitanen 1992) is used 

to prevent the re-determination of already known maxima. There are two strategies 

for grouping points around a local maximum: (i) retain only points with relatively low 

function values (Beckernad and Lago 1970, Törn 1973); (ii) push each point toward a 

local maximum by performing a few steps of a local search (Schoen 1991, Törn et al. 

1999). They do not work well when the function terrain is very rugged or when the 

search gets trapped in a deep but suboptimal valley (Zabinsky and Smith 1992). 

b. Random Search Methods 

These include pure random search, single-start (Sarma 1990, Schoen 1991, Spaans 

and Luus 1992, Törn et al. 1999), multi-start (Goldberg 1989, Michalewicz 1994), 

random line search, adaptive random search, partitioning subsets, replacing the worst 

point, evolutionary algorithms (Kirkpatrick et al. 1983, Aarts and Korst 1989), and 

simulated annealing. 

Simulated annealing (Kirkpatrick et al. 1983) and genetic algorithms (Michalewicz 

1994) are two popular stochastic global optimization methods. Simulated annealing 
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(SA) takes its intuition from the fact that heating and slowly cooling (annealing) a 

piece of metal brings it into a more uniformly crystalline state, which is believed to be 

the state where the free energy of bulk matter takes its global maximum. The role of 

temperature is to allow the configurations to reach energy states with a probability 

given by Boltzmann’s exponential law, so that they can overcome energy barriers that 

would otherwise force them into local maxima. Simulated annealing is provably 

convergent asymptotically in a probabilistic sense, but may be exceedingly slow. 

Various ad hoc enhancements make it much faster. Simulated annealing has been 

successfully applied to solve many nonlinear optimization problems (Ingber 1994). 

Özdamar and Demirhan (2000, 2001) provide extensive computational surveys 

reflecting the performance of both types of approaches (deterministic adaptive 

partitioning approaches and probabilistic approaches including many SA versions and 

clustering methods) where a large number of test functions are used. The authors 

reach the following empirical conclusion: SA (SA with local search (Özdamar and 

Demirhan 2000), and Adaptive SA (ASA, Ingber 1996) and the fuzzy adaptive 

partitioning scheme (Özdamar and Demirhan 2001) are the best performing ones 

among the tested algorithms. However, when the number of variables increase (above 

ten), the performance of both ASA and the fuzzy partitioning scheme deteriorate 

considerably and the SA with local search scheme becomes best performing. Yet, the 

results of the best approach are far from satisfactory.  

The performance of SA depends on the number of variables of the function under 

investigation, because, as a single point search technique, SA converges rather slowly 

in order to provide sufficient moves carried out in every direction (variable). Dekkers 

and Aarts (1991) provided a convergence proof for SA in the real domain. Various SA 

implementations exist in the literature (Corana et al. 1987, Ingberg 1994, Zacharias et 
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al. 1998). The strong points of SA and some pitfalls for potential SA users are 

indicated in an extensive review given by Ingber (1994) where a wide range of 

application areas from finance to combat analysis are described.  

Genetic algorithms make use of analogies to biological evolution by allowing 

mutations and crossovers between candidates of good local optima in the hope to 

derive even better ones. At each stage, a whole population of configurations is stored. 

Mutations are performed as local search, whereas crossover operators provide the 

ability to leave regions of attraction of local maximizers. With high probability, the 

crossover rules produce offspring’s of similar or even better fitness. The effect of 

interchanging coordinates is beneficial mainly when these coordinates have a nearly 

independent influence on the fitness, whereas if their influence is highly correlated, 

such as for functions with deep and narrow valleys not parallel to the coordinate axes, 

genetic algorithms have more difficulties. Successful tuning of genetic algorithms 

requires a considerable amount of insight into the nature of the problem at hand. 

Genetic algorithms have shown promising results in solving nonlinear optimization 

problems (Glover 1980, Le Grand and Merz 1993, Michalewicz 1994). 

Random search methods are easy to understand and simple to realize. The simplest 

random algorithm uses restarts to bring a search out of a local maximum. Others, such 

as simulated annealing, rely on probability to indicate whether a search should ascend 

from a local maximum. Other stochastic methods rely on probability to decide which 

intermediate points to interpolate as new starting points, like in random 

recombinations and mutations in genetic algorithms. These algorithms are weak in 

either their local or their global search. For instance, gradient information useful in 

local search is not used well in simulated annealing and genetic algorithms. In 

contrast, gradient-descent algorithms with multi-starts are weak in global search. 
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These methods perform well for some applications. However, they usually have many 

problem-specific parameters, leading to low efficiency when improperly applied 

(Betro and Schoen 1987, 1992, Boender and Rinnooy kan 1987, 1991). 

c. Methods Based on Stochastic Models 

Most of these methods use random variables to model unknown values of an objective 

function. One example is the Bayesian method, which is based on a stochastic 

function and minimizes the expected deviation of the estimate from the real global 

maximum (Mockus 1989, Zilinskas 1992, Mockus 1994). Bayesian methods do not 

work well because most of the samples they collect randomly from the error surface 

are close to the average error value, and these samples are inadequate to model the 

behavior at maximal points. Other methods based on stochastic models include 

methods that approximate the level sets. Although very attractive theoretically, this 

class of methods are too expensive to be applied to problems with more than twenty 

variables (Törn and Zilinskas 1989). 

2.2. Interval Arithmetic  

This section mainly deals with the foundations of interval arithmetic, the notation 

used, concept of inclusion functions, interval methods for uncertainty and some 

implementation examples for interval arithmetic. More detailed review over the 

interval arithmetic is available in Moore (1966), Alefeld and Herzberger (1983), 

Ratschek and Rokne (1988), Neumaier (1990), Hansen (1992), Ratschek and Rokne 

(1995), Kearfott (1996c), Neumaier (2004), and so on.  

2.2.1. Foundations 

Moore (1966) introduced the Interval arithmetic in the late 1960s to deal with 

infiniteness, to model uncertainty, and to tackle rounding errors of numerical 
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computation. Interval analysis is a set of algorithms that have been extended from 

numerical analysis to intervals, such as solving linear or nonlinear systems, 

differentiation or integration. Given a problem over the real numbers, interval 

computations are said to be reliable (verified) since no solution is lost (Granvilliers 

2004). 

Interval arithmetic is an elegant tool for practical work with inequalities, approximate 

numbers, error bounds, and more generally with certain convex and bounded sets. 

Moreover, it can also be used for solving bound constrained optimization, constraint 

satisfaction problem, and constrained optimization problems. 

2.2.2. Basics of Interval Arithmetic and Terminology 

Definition 2.1: Interval arithmetic (IA) is an arithmetic defined on convex sets of real 

numbers, called intervals. (Moore 1966, Alefeld and Herzberger 1983, Kearfott 

1996a) ■ 

The set of intervals is denoted by II: ={[a, b] | a ≤ b, a, b ∈ IR.  

Note that, in order to represent the real line with closed sets, II is made compact in the 

obvious way with the infinities {-∞, +∞}. The usual conventions apply: (+∞) + (+∞) 

= +∞, and so on. Every interval X ∈ II is denoted by [ X , X ], where its bounds are 

defined by X  = inf X and X  = sup X. 

For every a∈ II, the interval point [a, a] is also denoted by a. 

Some important notions are as follows: 

• Given a subset ρ of IR, the convex hull of ρ is the interval Hull (ρ) = [inf ρ, sup ρ].  
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• The width of an interval X is the real number, and defined as w (X) = X  - X .  

Example : The width of interval X = [2, 3] is defined as w (X) = 3 – 2 =1. 

• Given two real intervals X and Y, X is said to be tighter than Y if w (X) ≤ w (Y). 

• The radius of an interval X is defined as r (X) = 0.5*w (X) = 0.5*( X  - X ).  

• The midpoint of an interval X is defined as m (X) = 0.5*( X  + X ).  

• The mignitude of an interval X is the number 〈X〉 = min x∈X | x |.  

• The magnitude of an interval X is the number |X| = max {| X |, | X |}.  

Elements of II
 n

 also define boxes. Given Xi ∈ II, i = 1, 2,…, n, the corresponding box 

X is the Cartesian product of intervals, X = X1 × … ×Xn, where X ∈ II
 n

. A subset of 

X, Y ⊆X, is a sub-box of X. The notion of width is defined as follows in equation 

(2.1): 

w(X1 × … × Xn) = max 1≤i≤n w(Xi)    (2.1) 

Interval Arithmetic operations are set theoretic extensions of the corresponding real 

operations as defined in equation (2.2). Given X, Y∈ II, and an operation ∈ {+, −, 

×, ÷}, we have:  

X Y=Hull X Y, where (x, y) ∈ X ×Y.                                (2.2) 

For all X, Y ∈ II and X = [ X , X ] and Y = [ Y , Y ] it holds that  
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Addition rule: 

X + Y =[ X + Y , X + Y ] 

Subtraction rule: 

X – Y = [ X – Y , X – Y ] 

Multiplication rule:  

X × Y = [ min( X Y , X Y , X Y , X Y ), max( X Y , X Y , X Y , X Y )] 

Division rule: 

1 ÷ Y  = [1/ Y , 1/ Y ]  

X ÷ Y = X × 1/Y if 0 ∉ Y 

nth Power rule : 

 [1, 1]   if n = 0 

 [ X
n
, X

 n
]   if X  ≥ 0 or X  ≤ 0 ≤X and n is odd  

Xn =  [ X
 n
, X

n
]  if X  ≤ 0 

 [0, max( Xn , X
n

)] if X  ≤ 0 ≤X  and n is even for n = 0, 2, 4, 6, …… 

Due to properties of monotonicity, these operations can be implemented by real 

computations over the bounds of intervals. Given two intervals X = [a, b] and Y = [c, 

d], we have for instance:  X + Y = [a+c, b+d]. The associative and the commutative 

laws are preserved over II. However, the distributive law does not hold.  In general, 

only a weaker law is verified, called semi-distributivity. 

2.2.3. Extended Interval Arithmetic  

In the above rules of interval arithmetic, division by an interval containing zero is 

excluded. But it is often useful to remove this restriction. The resulting arithmetic is 

(2.3) 
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called extended interval arithmetic. The arithmetic was first discussed (independently) 

by Hansen (1968) and Kahan (1968). 

The rule for extended interval arithmetic must also satisfy associative and the 

commutative laws defined in equation (2.3). This condition gives rise to a set of rules 

extending to those in the section 2.2.2. 

Popova (1996) investigates the algorithmic aspects for implementation of interval 

arithmetic involving NaN's or signed zero and developed a simple model for the 

interval arithmetic exceptions and their handling in IEEE non-trapping mode. 

Verdonk et al. (2002) propose a set based representation of non-real to remove the 

restrictions (for example: divisible by zero, interval domains containing points outside 

the domain of the underlying functions) on the domain of interval functions and to 

guarantee the inclusion property in all situations for 100% reliability of interval 

arithmetic.  

Hyvönen (2001) investigates the conceptual and practical difficulties of the end users 

to interface with intervals. Further, Popova (2001) summarizes the distributive 

relations on multiplication and addition of generalized intervals. 

Kearfott et al. (2002) propose a new standard notation for the interval arithmetic and 

to standardize the notation used for interval analysis. 

For all X, Y ∈ II, and X = [ X , X ] and Y = [ Y , Y ] it holds that  
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If 0 ∈ Y, then  

  X [1/ Y ,  1/ Y ]    if  0 ∉ Y 

[–∞, ∞]    if 0 ∈ X and 0 ∈ Y 

[ X / Y , ∞]     if  X  < 0 and Y  < Y  = 0 

[–∞, X / Y ] ∪ [ X / Y , ∞]  if  X  < 0 and Y  < 0 < Y  

X
Y

 =  [–∞, X / Y ]   if  X  < 0 and 0 = Y  < Y  

[–∞, X / Y ]   if  0 < X  and Y  < Y = 0 

[–∞, X / Y ] ∪ [ X / Y , ∞]  if  0 < X  and Y  < 0 < Y  

[ X / Y , ∞]     if  X  < 0 and 0 = Y  < Y  

Ø    if  0 ∈ X and 0 = Y 

2.2.4. The Dependency Problem 

Suppose, the interval X = [a, b] subtracts from itself.  

Apply the subtraction rule defined in equation (2.3), the result obtained is  

X – X  = [a, b] – [a, b] = [a-b, b-a]      (2.5) 

We might expect to obtain [0, 0]. However, we do not (unless b=a). The result is {x–

y: x ∈ X, y ∈ x} instead of {x–x : x ∈ X}. 

In general, when a given variable occurs more than once in an interval computation, it 

is treated as a different variable in each occurrence. Thus, X – X is the same as X – Y 

with Y equal to but independent of X. This causes widening of computed intervals 

(2.4) 
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and makes it more difficult to obtain sharp results in calculations. One should always 

be aware of this consideration and take appropriate steps to reduce its effect.   

The nth Power rule defined as above is used to overcome the dependency problem in 

multiplication. For example, for n = 2, the definition is equivalent to equation (2.6) 

X2 = {x2 : x ∈ X}        (2.6) 

rather than,  

X × X = {x* y: x ∈ X, y ∈ X}       (2.7)  

If a particular interval variable occurs only once in a given form of a function, then it 

cannot give rise to dependency. Thus dependency can occur in evaluating a function        

f (X,Y) of the form (X - Y)/(X + Y), but not if it is rewritten as 1-2/(1 + X/Y). 

If we evaluate f (X, Y) in the latter form, the resulting interval is the exact range of f 

(x, y) for x ∈ X and y ∈ Y. 

Overestimation for a function can be defined as the difference between actual and the 

exact bounds of a function. This is mainly due to the dependency problem. Neumaier 

(1982) and Stahl (1997) propose a technique for finding the overestimation and its 

bounds in computing the function values.  

Various methods were proposed to handle dependency problems such as Gröbner 

basis (Buchbeger 1985), factorizations (Ceberio and Granvilliers 2002), substitution, 

and so on.   

2.2.5. Interval Arithmetic Properties 

Theorem 2.1 (Algebraic Properties)  (Hansen 1992) 

For all X, Y, and Z ∈ II. 

 Associativity   : (X + Y) + Z = X + (Y + Z) and (XY) Z = X(YZ) 
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 Commutativity : (X + Y) = (Y + X), XY = YX 

 Neutral Element  : (0 + X) = X, 1*X = X*1 

However, proper intervals do not have additive or multiplicative inverses. Further, the 

distributivity law does not hold for intervals. Instead, there is a weaker version of the 

same given as follows: 

Theorem 2.2 (Subdistributivity) (Hansen 1992) 

Interval arithmetic  is subdistributive in the sense that, if X, Y, and Z are intervals, 

then 

X(Y + Z) ⊆ XY + XZ     

Thus, although addition or multiplication of intervals is commutative and associative, 

the distributive laws do not hold. Furthermore, although there is an additive identity 

[1, 1], additive and multiplicative inverses do not exist. 

2.2.6. Inclusion Functions 

Interval arithmetic is particularly appropriate to represent outer approximations of real 

quantities. The range of a real function f over a domain D, denoted by F(D), can be 

computed by interval extensions. 

Definition 2.2 (Interval Extension): An interval extension of a real function                      

f : Df ⊂ IR n → IR is a function ϑ: IRn → IR such that  

∀ X ∈ IIn, (X ∈Df  ⇒ F (X) = { f (x) | x ∈ X } ⊆ ϑ(X)). ■ 

This inclusion formula is called Fundamental Theorem of Interval Arithmetic. 

Interval extensions are also called interval forms or inclusion functions. 

This definition implies the existence of infinitely many interval extensions of a given 

real function. In particular, the weakest and tightest extensions are respectively 

defined by: X→[-∞, +∞] and X → Hull F(X). 
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The most common extension is known as the natural extension. Natural extensions 

are obtained from the expressions of real functions, and are inclusion monotonic (this 

property follows from the monotonicity of interval operations). Hence, given a real 

function f, whose natural extension is denoted by F, and two intervals X and Y such 

that X ⊂ Y, the following holds: F (X) ⊂ F (Y). We denote the lower and upper 

bounds of the function interval range over a given box Y as (Y)F  and (Y)F , 

respectively. 

For a standard function h  such as sin, exp, and so on, pre-declared in a given 

programming language, it is not too difficult to obtain a good inclusion function H, 

since monotonicity properties of these functions are well known and then                              

H (X) = {h(x): x ∈ X} for any X ∈ II in the domain of h. For a general function f(x), x 

∈ IRn, the easiest method to obtain an inclusion function is so called natural interval 

extension, which is obtained by replacing each occurrence of variable x with a box 

including it, X, each occurrence of a predeclared function h by its corresponding 

interval operators. 

Some important properties of the inclusion function are given as follows (Neumaier 

1990, Hansen 1992, Ratschek and Rokne 1995, Stahl 1995). 

The properties of the inclusion function are as follows: 

Property 1: The inclusion function F is said to be an isotone inclusion function over 

X0 if for any pair of boxes Y, Z ⊆ X0, Y ⊆ Z implies F (Y) ⊆ F (Z). 

Property 2: The inclusion function F is said to be a ∝-convergent inclusion function 

over X0 if for any box Y ⊆ X0, w (F (Y))-w (f (Y)) ≤ c w (Y)α holds, where ∝ and c 

are positive constants and f (Y) is the range of f over Y. 
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Property 3: The inclusion function f has the zero convergence property, if                 

w (F (Z)) → 0 holds for all the {Zi} interval sequences for which Zi ⊆ X0                   

∀ i = 1, 2, … and  w (Zi) → 0. 

The following are the three methods used for developing the inclusion functions, 

which can easily be constructed (Ratschek and Rokne 1995, Neumaier 1990, Tóth 

2002): 

a. Natural Interval Extension 

Natural interval extension expands the arithmetical operations in a straightforward 

way from real to intervals (Moore 1966). The natural inclusion function for all 

functions is created by substitution of the real variables for intervals and the real 

operations or standard functions for interval operations or respective inclusion 

functions. It was shown that the convergence order of the natural inclusion function is 

at least 1.  

Natural interval extension inclusion functions are most widely used inclusion 

functions, which can be applicable for non-differentiable function also.  

b. Centered Form 

The centered form can be sub classified into two forms: 1) Mean value forms, and 2) 

Taylor forms (of second order). However, these inclusion functions depend on the 

derivative of the function, thus we will use this form if and only if the function if 

differentiable and also when the enclosure of the derivative is feasible to compute. 

The derivative of the given function can be easily calculated using automatic 

differentiation.  

Mean value forms (Fc (X)) involving generalized gradients, can be defined as 

equation (2.8): 
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Fc (X) = f(c) + (X - c) T F ′(X) for X ∈ II  (2.8) 

where c = m(X). In general, midpoint will be used for c, but it can be anywhere in X. 

If the convergence order of the inclusion function F ′(X) is at least one, then the 

convergence order of the centered form is at least a quadratic.  

Taylor forms can only be used when the direct computation of the mean value form is 

not possible or if the Hessian inclusion F ′′(X) is already available and can be 

incorporated without difficulties. Taylor form (Ft (X)) can be defined as equation 

(2.9): 

Ft (X) = f(c) + (X - c) T f ′(c) + 0.5 (X - c) T F ′′(X)(X - c) for X ∈ II  (2.9) 

c. Baumann’s Optimal Centered Form 

Baumann introduced the optimal c for the centered form. He proved that fc(X) ≤ fb
-(X)   

∀c∈X    for an optimal b-∈X. The optimal lower bound is ( )X-b
f , where b- can be 

obtained in the one dimensional case as 

X - X ,
(X) (X)

b
f f

− =
′ ′−

 

In higher dimensions the above formula must be used component wise. For the 

optimal upper bound b+  one should reflect b−  on the midpoint of the interval X. 

The Baumann’s form always gives at least as good enclosure as the general centered 

form; still its convergence order is also at least 2.  

Nataraj and Kotecha (2002) propose an algorithm for global optimization using the 

Taylor Bernstein form as inclusion function for better convergence rate in the 

function. Also, the empirical convergence speed of inclusion functions are studied and 

found that natural interval extension of a given function can be as good as usual 
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quadratically convergent inclusion functions. Tóth (2002) compared different 

inclusion methods and found that the centered forms (second-order) as larger 

convergences order than that of the rest of the inclusion methods. Vinkó et al. (2002) 

propose a new inclusion function called Kite for one-dimensional and multi 

dimensional functions using the least gradient information. They also study the impact 

of the kite inclusion function over the convergence, which helps in further 

implementation.   

2.2.7. Interval Computations and Mathematical Proofs 

The powerful aspect of interval computations is tied to the Brouwer fixed-point 

theorem (Kearfott 1996a), and shown in the Theorem 2.3. 

Theorem 2.3 (Brouwer fixed point theorem) (Kearfott 1996a) 

 Let D be homeomorphic to the closed unit ball in IIn, and suppose P is a continuous 

mapping such that the P maps D into D, then P has a fixed point, i.e., there is an X∈D 

such that P (X) = X. 

The Brouwer fixed point theorem combined with interval arithmetic enables 

numerical computations to prove existence of solutions to linear and nonlinear 

systems. The simplest context in which this can be explained is the one-dimensional 

interval Newton method. 

Suppose f: X = [ X , X ] → IR has a continuous first derivative on X, suppose x%∈X,         

F ′(X) is a set that contains the range of f ′ over X (such as when f ′is evaluated at X 

with interval arithmetic). Then the operator 

N (f; X, x% ) = x%  - f( x% ) / F ′(X)  

is termed the univariate interval Newton method. Applying the Brouwer fixed point 
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theorem in the context of the univariate interval Newton methods leads to: 

Theorem 2.4 (Miranda 1940) 

If N (f; X, x% ) ⊂ X, then there exists a unique solution of  f(x) = 0 in X.  

Existence of Theorem 2.4 follows from Miranda’s theorem (Miranda 1940), a 

corollary of Brouwer fixed point theorem. Uniqueness is as follows: Suppose there 

were two solutions x∈X and x% ∈X. Then f(x) = 0 = f( x% ), so there is a ξ∈X with  

f(x) = f( x% ) + f ′(ξ)(x - x% ) =  f ′(ξ) (x - x% ) = 0. 

However, since N (f; X, x% ) ⊂ X, f ′(ξ) cannot contain zero, so 0 ∉ f ′(X) (x - x% ). But 

this contradicts 0 = f ′(ξ) (x - x% ) ∈  f ′(X) (x - x% ). 

Existence theory for multivariate interval Newton methods is similar. Uniqueness 

theory proceeds by proving that the intervals derivative matrix or interval slope matrix 

is regular. There are various ways of doing this computationally. For example, if a 

preconditioned interval version of Gaussian elimination completes without pivots that 

contain zero, and then the interval matrix cannot contain any singular matrices. 

This computational existence uniqueness theory has wide use, from constructing 

narrow bounds around approximate solutions to linear systems, within which an 

actual solution must lie, to proving existence and uniqueness of solutions to operator 

equations. 

2.2.8. Interval Newton Method 

Interval Newton methods are excellent methods for determining all zeros of a 

continuously differentiable vector-valued function φ: X→ IRm where X ∈ IIm. These 

methods are important tools for nonlinear optimization problems since they can be 
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used for computing the critical points of φ  by applying the methods of Jacobian 

( ( )φ XJ ), or for solving Kuhn-Tucker or John conditions in constrained optimization. 

The interval Newton method was introduced by Moore (1966) and it has been further 

extensively developed by many researchers. The latest state of art for interval Newton 

methods may be found in Neumaier (1990). More detailed review of Interval Newton 

methods is available in Ratschek and Rokne (1988), Neumaier (1990), Hansen (1992), 

Ratschek and Rokne (1995), Kearfott (1996c) and so on.  

2.2.9. Interval Methods for Uncertainity 

In many real-life situations, the input data come from measurements. Measurements 

are not 100% precise (Tung 2001). Therefore, if we have made the measurements 

with accuracy ∆, and z obtained the measurement result, this means that the actual 

value y of the measured quantity can take any value from the interval y = [z−∆, z+∆]. 

The desired solution x  depends on the exact value of y  from this interval. Thus, it 

makes sense to produce the set of all possible solutions x  that correspond to all 

possible values y ∈ [z−∆, z+∆]. By this way interval framework can also consider the 

uncertainty in the input data (Kearfott and Kreinovich 1996). This makes the Interval 

Analysis to tackle the uncertainty of data inherently, which makes the whole approach 

more powerful in real-time scenarios. 

There are several useful quantities related to the concept of the interval: size, radius, 

and midpoint (Schwartz 1999). The size (or thickness) of an interval indicates the 

uncertainty in a value and is specified as a width ≥ 0. Intervals with zero thickness are 

crisp intervals whereas non-crisp intervals are said to be thick. The concepts of radius 

and midpoint are useful in describing intervals as well as constructing them.  
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To construct a new interval, one way is to use an original value, which is a value that 

supplies the midpoint point of a new interval. Then, a certain radius (uncertainty) can 

be added to and subtracted from the original value to obtain a new interval. Similarly, 

the midpoint can also serve as an approximation to a value with an error of plus or 

minus the radius. Using these definitions, the percentage uncertainty in a midpoint 

value would be:  

(X) *100
(X)

rp
m

=  

2.2.10. Motivation in Selection of Interval Methods 

The following indicates the advantages of intervals.  

 the control of all kinds of errors, especially rounding errors, truncation errors, 

etc (Ratschek and Rokne 1995), 

 the processing of infinite data sets (Ratschek and Rokne 1995), 

 With regard to the global optimization, interval based optimization techniques 

are able to continually delete portions of the search space with the objective of 

maintaining a final box of any desired width, which contains the global 

solution (Vaidyanathan and Halwagi 1994), 

 Interval arithmetic can take care of uncertainty inherently, which is most 

common property of any real-time problem (Kearfott and Kreinovich 1996, 

Schwartz 1999), and  

 Ease in integration to symbolic computing and consistency techniques.   
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2.2.11. Applications of Interval Analysis 

The following list indicates some of the basic applications using interval analysis 

(Kearfott and Kreinovich 1996).  

 In Engineering:  

o to manufacturing, including:  

 quality control;  

 detection of defects in computer chips;  

 flexible manufacturing. 

o to automatic control, including:  

 control of airplane engines;  

 control of electric power plants.  

o to robotics;  

o to airplane inertial navigation;  

o to civil engineering, including traffic control.  

 In Ergonomics and Social Sciences:  

o to learning curves (that describe how people learn);  

o to project management;  

o to service systems;  

o to sociology.  

 In Physics:  

o to laser beams;  

o to particle accelerators;  

o to astrophysics (planet atmospheres);  

o to image processing in radio astronomy.  

 In Geology and Geophysics.  
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 In Chemistry , including:  

o to spectral analysis.  

 In Computer Science and Engineering:  

o to expert systems;  

o to communication networks, especially computer networks.  

 In Economics:  

o to planning;  

o to banking. 

2.3. Feasible Sequential Quadratic Programming (FSQP) 

This section deals with Feasible Sequential Programming (FSQP) and its related 

algorithms. Moreover, it also presents the basic motivation in selection of FSQP for 

the current research work. This section is greatly influenced by the information given 

in http://www.aemdesign.com/FSQPwhatis.htm. 

2.3.1. Introduction 

Portable standard C implementation FSQP (CFSQP) and Fortran77 implementation 

FSQP (FFSQP) were originally developed by Andre Tits' research group at the 

Institute for Systems Research (ISR), University of Maryland.  

The algorithm's main architects were Panier and Tits (1988). The implementation was 

due to Zhou et al. (1997). The first version of the CFSQP, carried out by Craig 

Lawrence, followed in 1993 (Lawrence et al. 1997, Lawrence and Tits 2001). 

Responsibility for their further development and support was transferred to AEM 

Design in 2000. 

FSQP is a source code for minimization of the maximum of a set of smooth objective 

functions subject to general smooth constraints.  
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If the initial guess provided by the user is infeasible for some inequality constraint or 

some linear equality constraint, FSQP first generates a feasible point for these 

constraints; subsequently, the successive iterations generated by FSQP all satisfy 

these constraints. Nonlinear equality constraints are turned into inequality constraints 

and the maximum of the objective function is replaced by an exact penalty function 

which penalizes nonlinear equality constraint violations only. The user has the option 

of either requiring that the objective function (penalty function if nonlinear equality 

constraints are present) decreases at each iteration after feasibility for nonlinear 

inequality and linear constraints has been reached (monotone line search), or requiring 

a decrease within at most four iterations (nonmonotone line search). The user must 

provide functions that define the objective functions and constraints and may either 

provide functions to compute the respective gradients or require that FSQP estimate 

them by forward finite differences. 

When solving problems with numerous sequentially related constraints (or 

objectives), such as discretized semi-infinite programming (SIP) problems, the C 

version CFSQP gives the user the option to use an algorithm that efficiently solves 

these problems, greatly reducing computational effort. 

FSQP is an implementation of two algorithms based on Sequential Quadratic 

Programming (SQP), modified so as to generate feasible iterates. In the first one 

(monotone line search), a certain Armijo type arc search is used with the property that 

the step one is eventually accepted, a requirement for superlinear convergence. In the 

second one the same effect is achieved by means of a nonmonotone search along a 

straight line. The merit function used in both searches is the maximum of the 

objective functions if there is no nonlinear equality constraint, or an exact penalty 

function if nonlinear equality constraints are present. 



 

 56

2.3.2. The Basic FSQP Algorithm 

SQP (Sequential Quadratic Programming) type algorithm modified so as to generate 

feasible iterates. The basic problem solved is (where the variable x is n-dimensional) 

min max {fi(x)} 
x      i∈I 
subject to   

gj(x) ≤ 0, j = 1,…,ni,, where, ni is the number of inequalities 

hj(x) = 0, j = 1,…,ne, where, ne is the number of equalities. 

Two phase operation:  

Phase I - generate iterate satisfying all linear constraints and nonlinear inequality 

constraints. 

Phase II - minimize the maximum of the objectives, while maintaining satisfaction of 

linear constraints and nonlinear inequality constraints, nonlinear equality constraints 

being satisfied asymptotically. 

Feasibility 

Consider the simple problem  

min  fi(x) 
 x 
subject to g(x) ≤ 0, 

Feasibility requires g(xk) ≤ 0, for all k. 

FSQP generates iterates that satisfy all inequality constraints and linear equality 

constraints. 
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2.3.3. Why Feasibility?  
From an application point of view: 

 
 Objective may not be achieved if certain constraints are violated. For example, 

the steady-state errors of a dynamical system are undefined if the system is not 

stable. Important for real-time applications.  

 Termination of the optimization process after a prescribed amount of time, in 

which case it may be crucial that the sub-optimal solution satisfy at least some 

hard constraints.  

 In the context of optimal design, tradeoff exploration cannot meaningfully 

take place if some hard constraints are not first satisfied. It is thus of great 

interest to produce iterates that all satisfy these hard constraints. 

From an algorithmic point of view: 

 
 The line search criterion can be based on the decrease of the objective 

function, i.e., there is no need for an artificial "merit function". 

 In the SQP context, whenever the current iterate is feasible, the QP sub 

problem has a feasible solution. 

2.3.4. Nonlinear Equality Constraints 
 
The basic FSQP algorithm was designed for nonlinear inequality constraints only. To 

handle nonlinear equality constraints, FSQP incorporates a modification of a scheme 

due to Mayne and Polak (1976). Equality constraints h(x) = 0 are turned into 

inequality constraints h(x) ≤ 0 and h(x) ≥ 0. Negative values are penalized, where the 
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objective function is replaced with f(x)-
1

em

j=
∑ cj hj(x), where cj, j = 1,…,me, are positive 

penalty parameters (iteratively increased, but bounded). 

The result is a differentiable exact penalty function. 

2.3.5. Line Search 
 

FSQP provides a choice of line searches:  

 
Armijo (monotone) - Requires decrease of objective function at every step (Arminjo 

1966). 

Drawback: requires evaluation of constraints at an intermediate point. 

Nonmonotone - Requires decrease of objective in at most four steps (Bonnans et al. 

1992). 

Drawback: objective could increase between successive iterates. 

Special features of line search: no further evaluation of constraints once a constraint is 

violated. Active or previously violated functions are evaluated first at each trial point. 

2.3.6. Multiple Objectives/Constraints 
 

Consider the following problem: 
min max {fi(x, ω)} 

x   ω∈Ω 

subject to  g (x, ξ) ≤ 0,  ∀ ξ ∈ Ξ 

where Ω ⊂ IR,  Ξ ⊂ IR are large, but finite, sets. For example, finely discretized Semi 

infinite Programming (SIP) problems. 
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CFSQP is equipped to efficiently solve problems with large sets of objectives and/or 

constraints. Consequently, the sizes of the QP's to be solved as well as the number of 

gradient evaluations are drastically reduced. 

2.3.7. Automatic Differentiation 

ADIFFSQP Version 0.9 (experimental version), an interface between FFSQP and the 

automatic differentiation preprocessor ADIFOR2.0, is also available (Liu and Tits 

1997). 

2.3.8. Selected Applications (http://www.aemdesign.com/FSQPapplref.htm) 

 

 RIOTS: A Matlab toolbox for solving optimal control problems, 

 Magnetic Resonance Imaging , 

 Clutter noise in Over-The-Horizon radar, 

 Robotic manipulation planners, 

 Hub-and-shaft assemblies for dual-wheel excavators, 

 Optimal Protein Separation, 

 Parametric Surface Polygonization, 

 Analysis of intermediately lethal tumors, 

 Hierarchical traffic control systems, 

 Failure detection and isolation, 

 Multi-purpose reservoir systems, 

 Neural net based predictive control, and 

 Aerosol thermodynamics   

 

 



 

 60

2.3.9. Motivation in Selection of FSQP 

 FSQP algorithm uses directly tackling optimization problems with: multiple 

competing linear/nonlinear objective functions (minimax), linear/nonlinear 

inequality constraints, and linear/nonlinear equality constraints.  

 (http://www.enee.umd.edu/Newsletter/vol5_no1/fsqp.htm) 

 It also contains special provisions for maintaining “semi-feasibility” of each 

iterate and efficiently handling problems with multiple “sequentially related” 

objectives and/or constraints. (http://www.enee.umd.edu/Newsletter/vol5_no1/ 

fsqp.htm) 

 FSQP methods are particularly useful for solving those problems arising from 

engineering design where the objective function might be undefined outside 

the feasible region (Yang et al. 2003). 

 FSQP methods are that the objective function can be used as a merit function 

to avoid the use of a penalty function (Yang et al. 2003). 

 The main advantage of this algorithm is a reduction in the amount of 

computation required in order to generate a new iterate (Lawrence and Tits 

2001). 

 FSQP is interfaced with Automatic differentiation (Liu and Tits 1997).  
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Chapter 3 
 
Tree Management Approach 
 
This chapter mainly describes the existing tree management systems and proposes a 

new tree management system. The existing tree management systems are originally 

developed by Körf (1998) is the basis for the proposed new system. 

3.1. Introduction 

The tree management systems can be broadly classified into: 1. Brute-force search 

tree, and 2. Heuristic search tree (Körf 1998). 

1. Brute-force Search Tree 

The most general search algorithms are brute-force searches, since they do not require 

any domain specific knowledge. All that is required for a brute-force search is a state 

description, a set of legal operators, an initial state, and the description of the goal 

state. The most important brute-force searches are breadth-first, uniform-cost, depth-

first, depth-first iterative deepening, and bidirectional search. In the descriptions of 

the algorithms below, to generate a node means to create the data structure 

corresponding to that node, whereas to expand a node means to generate all the 

children of that node. 

a. Breadth-First Search 

Breadth-first search expands nodes in order of their distance from the root, generating 

one level of the tree at a time until a solution is found. This is shown in Figure 3.1. It 

is most easily implemented by maintaining a queue of nodes, initially containing just 
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the root, and always removing the node at the head of the queue, expanding it, and 

adding its children to the tail of the queue. 

Since it never generates a node in the tree until all the nodes at shallower levels have 

been generated, breadth-first search always finds a shortest path to a goal. Since each 

node can be generated in constant time, the amount of time used by breadth-first 

search is proportional to the number of nodes generated, which is a function of the 

branching factor ‘b’ and the solution depth ‘d’. Since the number of nodes at level ‘d’ 

is bd, the total number of nodes generated in the worst case is b + b2 + b3 + …+ bd, 

which is O(bd), the asymptotic time complexity of breadth-first search. 

The main drawback of breadth-first search is its memory requirement. Since each 

level of the tree must be saved in order to generate the next level, and the amount of 

memory is proportional to the number of nodes stored, the space complexity of 

breadth-first is also O(bd). As a result, breadth-first search is severely space-bound in 

practice, and will exhaust the memory available on typical computers in a matter of 

minutes. 
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Figure 3.1 Order of Node Generation for Breadth-First Search 

Source: Körf (1998)
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b. Uniform-Cost Search 

If all edges do not have the same cost, then breadth-first search generalizes to 

uniform-cost search. Instead of expanding nodes in order of their depth from the root, 

uniform-cost search expands nodes in order of their cost from the root. At each step, 

the next node n to be expanded is one whose cost g(n) is lowest, where g(n) is the sum 

of the edge costs from the root to node n. The nodes are stored in a priority queue. 

This algorithm is also known as Dijkstra’s single-source shortest-path algorithm 

(Dijkstra 1959). 

Whenever a node is chosen for expansion by uniform-cost search, a lowest-cost path 

to that node has been found. The worst-case time complexity of uniform-cost search is 

O(bc/m), where c is the cost of an optimal solution, and m is the minimum edge cost. 

Unfortunately, it also suffers the same memory limitation as breadth-first search. 

c. Depth-First Search 

Depth-First Search remedies the space limitation of breadth-first search by always 

generating next a child of the deepest unexpanded node as shown in Figure 3.2. Both 

algorithms can be implemented using a list of unexpanded nodes; with the difference 

that breadth-first search manages the list as a first-in first-out queue, whereas depth-

first search treats the list as a last-in first-out stack. More commonly, depth-first 

search is implemented recursively, with the recursion stack taking the place of an 

explicit node stack. 

The advantage of depth-first search is that its space requirement is only linear with 

respect to the search depth, as opposed to exponential for breadth-first search. The 

reason is that the algorithm only needs to store a stack of nodes on the path from the 
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root to the current node. The time complexity of a depth-first search to depth ‘d’ is 

O(bd), since it generates the same set of nodes as breadth-first search, but simply in a 

different order. Thus, as a practical matter, depth-first search is time limited rather 

than space-limited. 

The disadvantage of depth-first search is that it may not terminate on an infinite tree, 

but simply goes down the left-most path forever. Even a finite graph can generate an 

infinite tree. The usual solution to this problem is to impose a cutoff depth on the 

search. Although the ideal cutoff is the solution depth ‘d’, this value is rarely known 

in prior to solving the problem. If the chosen cutoff depth is less than ‘d’, the 

algorithm will fail to find a solution, whereas if the cutoff depth is greater then ‘d’, a 

large price is paid in execution time, and the first solution found may not be an 

optimal one. 

 

 

 

 

 

 

d. Depth-First Iterative-Deepening 

Depth-first iterative deepening (DFID) combines the best features of breadth-first and 

depth-first search (Körf 1985, Stickel and Tyson 1985). DFID first performs a depth-

first search to depth one, then starts over, executing a complete depth-first search to 
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Figure 3.2 Order of Node Generation for Depth-First Search 

 Source: Körf (1998)
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depth two, and continues to run depth-first searches to successively greater depths, 

until a solution is found (see Figure 3.3). 

Since it never generates a node until all shallower nodes have been generated, the first 

solution found by DFID is guaranteed to be along a shortest path. Furthermore, since 

at any given point it is executing a depth-first search, saving only a stack of nodes, 

and the algorithm terminates when it finds a solution at depth ‘d’, the space 

complexity of DFID is only O(d). 

Although it appears that DFID wastes a great deal of time in the iterations prior to the 

one that finds a solution, this extra work is usually insignificant. To see this, note that 

the number of nodes at depth ‘d’ is bd, and each of these nodes are generated once, 

during the final iteration. The number of nodes at depth d-1 is bd-1, and each of these 

is generated twice, once during the final iteration, and once during the penultimate 

iteration. In general, the number of nodes generated by DFID is   

bd + 2bd-1 + 3 bd-2 + … + db. 

This is asymptotically O (bd) if ‘b’ is greater than one, since for large values of d the 

lower order terms become insignificant. In other words, most of the work goes into 

the final iteration, and the cost of the pervious iterations is relatively small. The ratio 

of the number of nodes generated by DFID to those generated by breadth-first search 

on a tree is approximately b/(b-1). In fact, DFID is asymptotically optimal in terms of 

time and space among all brute-force shortest-path algorithms on a tree (Dillenburg 

and Nelson 1994). 

If the edge costs differ from one another, then one can run an iterative deepening 

version of uniform-cost search, where the depth cutoff is replaced by a cutoff on the 

g(n) cost of a node. At the end of each iteration, the threshold for the next iteration is 
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set to the minimum cost of all nodes generated on the previous iteration whose cost 

exceeded the previous threshold.  

On a graph with cycles, however, breadth-first search may be much more efficient 

than any depth-first search. The reason is that a breadth-first search can check for 

duplicate nodes whereas a depth-first search cannot. Thus, the complexity of depth-

first search depends on the number of paths of a given length. For example, in a 

square grid, the number of nodes within a radius ‘r’ of the origin is O(r2), whereas the 

number of paths of length r is O(3r), since there are three children of every node, not 

counting its parent. Thus, in a graph with a large number of very short cycles, 

breadth-first search is preferable to depth-first search, if sufficient memory is 

available. Two approaches to the problem of pruning duplicate nodes in depth-first 

search are presented in Dillenburg and Nelson (1993) and Taylor and Körf (1993). 

 

 

 

 

 

 

e. Bidirectional Search 

Bidirectional search is a brute-force algorithm that requires an explicit goal state 

instead of simply a test for a goal condition (Pohl 1971). The main idea is to 

simultaneously search forward from the initial state, and backward from the goal 

state, until the two search frontiers meet. The path from the initial state is then 

Figure 3.3 Order of Node Generation for Depth-First Iterative Deepening Search 
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Source: Körf (1998)
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concatenated with the inverse of the path from the goal state to the complete solution 

path. 

Bidirectional search still guarantees optimal solutions. Assuming that the comparisons 

for identifying a common state between the two frontiers can be done in constant time 

per node, by hashing for example, the time complexity of bidirectional search is 

O(bd/2) since each search need only proceeds to half the solution depth. Since at least 

one of the searches must be breadth-first in order to find a common state, the space 

complexity of bidirectional search is also O(bd/2). As a result, bidirectional search is 

space bound in practice.   

f. Combinatorial Explosion 

The problem with all brute-force search algorithms is that their time complexities 

grow exponentially with problem size. This is called combinatorial explosion, and as 

a result, the size of problems that can be solved with these techniques is quite limited. 

2. Heuristic Search Tree 

In order to solve larger problems, domain-specific knowledge must be added to 

improve the search efficiency. In Artificial Intelligence, heuristic search has a general 

meaning and a more specialized technical meaning. In a general sense, the term 

heuristic is used for any advice that is often effective, but is not guaranteed to work in 

every case. Within the heuristic search literature, however, the term heuristic usually 

refers to the special case of a heuristic evaluation functions. 

a. Heuristic Evaluation Functions 

In bound constrained optimization problem for example, the objective function is of 

maximization type, heuristic evaluation function estimates the cost as the upper bound 

of the objective function. The key properties of a heuristic function are that it 
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estimates actual cost, and that it is inexpensive to compute. In addition, most heuristic 

functions are derived from the original problem, for example, ratio of upper bound of 

the objective function to the range of objective function, and so on. Similarly, one can 

define heuristic function for constrained optimization and also for continuous 

constraint satisfaction problems. 

A number of algorithms make use of heuristic functions, including pure heuristic 

search, the A* algorithm, iterative deepening-A*, depth-first branch and bound, and 

the heuristic path algorithm. In addition, heuristic information can be employed in 

bidirectional search as well. 

b. Pure Heuristic Search 

The simplest of these algorithms, pure heuristic search, expands nodes in order of 

their heuristic values h(n) (Doran and Michie 1966).  

Example: 

For Bound Constrained Optimization Problem 

h(n) = Upper bound of the objective function, 

For Continuous Constraint Satisfaction Problem 

h(n) = Sum of infeasibility over all constraints, 

For Constrained Optimization problem 

h(n) = Upper bound of the objective function + Sum of infeasibility over all 

constraints 

It maintains a closed list of those nodes that have already been expanded, and an open 

list of those nodes that have been generated but not yet expanded. The algorithm 

begins with just the initial state on the Open list. At each cycle, a node on the Open 
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list with the minimum or maximum (based on the type of problem) h(n) value is 

expanded, generating all of its children, and is placed on the Closed list. The heuristic 

function is applied to the children, and they are placed on the Open list in order of 

their heuristic values. The algorithm continues until a goal state is chosen for 

expansion. 

In a graph with cycles, multiple paths will be found to the same node, and the first 

path found may not be the shortest. When a shorter path to a closed node is found, the 

node is moved to open, and the shorter path is associated with it. The main drawback 

of pure heuristic search is that as it ignores the cost of the path so far to node n, it does 

not find optimal solutions. 

Breadth-first search, uniform-cost search, and pure heuristic search are all special 

cases of a more general algorithm called best-first search. In each cycle of a best-first 

search, the node that is best according to some cost function is chosen for expansion. 

The best-first algorithms differ only in their cost functions: the depth of node n for 

breadth, cost of the path from initial state to node n (g(n)) for uniform-cost search, 

and h(n) for pure heuristic search. 

c. A* Algorithm 

The A* algorithm (Hart et al. 1968) combines features of uniform-cost search and 

pure heuristic search to efficiently compute optimal solutions. A* is a best-first search 

in which the cost associated with a node is f(n) = g(n) + h(n), where g(n) is the cost of 

the path from the initial state to node n, and h(n) is the heuristic estimate of the cost of 

a path from node n to a goal. Thus, f(n) estimates the lowest total cost of any solution 

path going through node n. At each point a node with the lowest f value is chosen for 

expansion. Ties among nodes of equal f value should be broken in favor of nodes with 
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lower h values. The algorithm terminates when a goal node is chosen for expansion. 

The main drawback of A*, and indeed of any best-first search, is its memory 

requirement. Since at least the entire Open list must be saved, A* is severely space-

limited in practice, and is no more practical than breadth-first search on current 

machines. 

d. Iterative-Deepening-A* 

Just as depth-first iterative-deepening solved the space problem of breadth-first 

search, iterative-deepening-A* (IDA*) eliminates the memory constraint of A*, 

without sacrificing solution optimality (Körf 1985). Each iteration of the algorithm is 

a depth-first search that keeps track of the cost, f(n) = g(n) + h(n), of each node 

generated. As soon as a node is generated whose cost exceeds a threshold for that 

iteration, its path is cut off, and the search backtracks before continuing. The cost 

threshold is initialized to the heuristic estimate of the initial state, and in each 

successive iteration it is increased to the total cost of the lowest-cost node that was 

pruned during the previous iteration. The algorithm terminates when a goal state is 

reached whose total cost does not exceed the current threshold.  

Since IDA* performs a series of depth-first searches, its memory requirement is linear 

with respect to the maximum search depth. In addition, if the heuristic function is 

admissible, IDA* finds an optimal solution. Finally, by an argument similar to that 

presented for DFID, IDA* finds an optimal solution. Moreover, IDA* expands the 

same number of nodes, asymptotically, as A* on a tree, provided that the number of 

nodes grows exponentially with solution cost. These facts, together with the 

optimality of A*, imply that IDA* is asymptotically optimal in time and space over all 

heuristic search algorithms that find optimal solutions on a tree. Additional benefits of 
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IDA* are that it is much easier to implement, and often runs faster than A*, since it 

does not incur the overhead of managing the Open and Closed lists. 

The other Heuristic Search algorithms are Depth-First Branch-and-Bound, 

Complexity of Finding Optimal Solutions, Heuristic Path Algorithm, and Recursive 

Best-First Search (Körf 1998).  

3.2. Adaptive Tree Management 
 
3.2.1. Introduction 
 
The tree management system in the proposed IP maintains a stage-wise branching 

scheme that is conceptually similar to the iterative deepening approach (Körf 1985). 

The new adaptive tree management is applied in solving CCSP and COP problems.  

This tree management comprises of two subunits such as best-first (in case of CCSP, 

worst-first is selected because we select the box with the maximum infeasibility 

degree) and restricted depth-first tree management systems.  The best-first of the 

proposed tree management uses the following merit function to rank the boxes in the 

pending list. 

In CCSP: 

Merit function value = Sum of infeasibility over all constraints, 

In COP: 

Static penalty box ranking: 

Merit function value = Upper bound of objective function + Sum of infeasibility over 

all constraints.  
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Non-penalty box ranking: 

If a feasible solution (CLB) is not identified: 

Merit function value = Sum of infeasibility over all constraints  

If a feasible solution (CLB) is identified: 

Merit function value = Upper bound of objective function  

However, the depth-first unit of the proposed tree management utilizes the Total Area 

Deleted (TAD) by discarding boxes fails to improve in two consecutive partitioning 

iterations in this sub-tree.   

Initial steps of the adaptive tree management procedure: 

1. Box ranking 

Rank the candidate boxes according to merit function defined as above. 

2. Generating partial deeper tree levels  

The new approach has the following feature related to the selection of child box to re-

partition: 

a. Once a parent box is selected for re-partitioning, the algorithm first assesses the 

child boxes before placing them in the current stage’s candidate list.  

b. It ranks child boxes according to the swapping dual criteria and then selects the first 

to re-partition.  

c. Steps 2a and 2b are repeated until two consecutive re-partitioning steps do not 

result in at least one discarded box. 

3. Maintaining stage-wise tree with two lists of candidate boxes and invoking 

local search  

a. The new IP algorithm invokes FSQP in each unprocessed box once the algorithm 

fails to discard a box in two consecutive re-partitioning iterations. 
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 b. If FSQP identifies a stationary point better than the CLB in any box, then the CLB 

is updated. 

c. Boxes subjected to FSQP are placed back in the current candidate list (first 

candidate list). 

 d. After FSQP is invoked once in a given stage, all generated child boxes are placed 

in the candidate list of the next stage (second candidate list). 

e. The candidate boxes in the next stage are not explored unless all boxes in the 

current stage’s list is depleted. 

 

Figure 3.4. Initial steps of the adaptive iterative deepening procedure. 

A more detailed description is presented in the following subsection 3.2.2. 

3.2.2. Detailed description  

The iterative deepening approach explores all nodes generated at a given tree level 

(stage) before it starts assessing the nodes at the next stage. Exploration of boxes at 

1

3 

Discard failed 
twice! call FSQP 

Select # 3 

Stage 2:  
Second Stage Candidate list 
starts, but not explored before 
#2 and #5 are explored. Back 
to # 5, first ranking box in 
Stage 1. 

2

4 5

6 7 

Stage 1: Candidate list ranked 
in order of valid criterion: # 4 is 
first to re-partition, but its 
children go to list of Stage 2. 

Select #3 
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the same stage can be done in any order, the sweep may start from best-first box or 

the one on the most right or most left of that stage.  On the other hand, in the proposed 

adaptive tree management system, a node (parent box) at the current stage is 

permitted to grow a sub-tree forming partial succeeding tree levels and to explore 

nodes in this sub-tree before exhausting the nodes at the current stage. In the COP, if 

a feasible solution (CLB) is not identified yet boxes in the sub-tree are ranked 

according to ascending order of total feasibility uncertainty degree of a box criterion, 

otherwise they are ranked in descending order of upper bound of the objective 

function. In the CCSP, boxes are simply ranked according to descending order of total 

feasibility uncertainty degree of a box criterion and a box is selected among the 

children of the same parent according to maximum total feasibility uncertainty degree 

of a box (worst-first). In the COP, if a feasible solution is not identified yet a box is 

selected among the children of the same parent according to minimum total feasibility 

uncertainty degree of a box criterion, otherwise a box with maximum upper bound of 

the objective function. Then, the child box is partitioned again continuing to build the 

same sub-tree. This sub-tree grows until the TAD by discarding boxes fails to improve 

in two consecutive partitioning iterations in this sub-tree.  Such failure triggers a call 

to local search where all boxes not previously subjected to local search are processed 

by the procedure FSQP, after which they are placed back in the list of pending boxes 

and exploration is resumed among nodes at the current stage. Feasible solutions found 

by FSQP are stored. If a box contains more than one feasible solution, then these are 

discovered in its child boxes. 

The above adaptive tree management scheme is achieved by maintaining two lists of 

boxes, Bs and Bs+1 that are the lists of boxes to be explored at the current stage s and 

the next stage s+1, respectively. Initially, the set of indeterminate boxes in the 
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pending list Bs consists of X only and Bs+1 is empty. As child boxes are added to a 

selected parent box, they are ordered in descending order of merit function. Boxes in 

the sub-tree stemming from the selected parent at the current stage are explored and 

partitioned until there is no improvement in TAD in two consecutive partitioning 

iterations. At that point, partitioning of the selected parent box is stopped and all 

boxes that have not been processed by local search are sent to FSQP module and 

processed to identify feasible point solutions if FSQP is successful in doing so. From 

that moment onwards, child boxes generated from any other selected parent in Bs are 

stored in Bs+1 irrespective of further calls to FSQP in the current stage. When all 

boxes in Bs have been assessed (discarded, stored as feasible boxes or partitioned), the 

search moves to the next stage, s+1, starting to explore the boxes stored in Bs+1. In 

this manner, a lesser number of boxes (those in the current stage) are maintained in 

primary memory and the search is allowed to go down to deeper levels within the 

same sub-tree, increasing the chances to discard boxes. On the other hand, by 

enabling the search to explore horizontally across boxes at the current stage, it might 

be possible to find feasible solutions faster by not partitioning parent boxes that are 

not so promising.  

The tree continues to grow in this manner taking up the list of boxes of the next stage 

after the current stage’s list of boxes is exhausted. The algorithm stops either when 

the theoretical number of feasible solutions are found (in equality problems) or CPU 

time reaches a given limit or when there are no boxes remaining in Bs and Bs+1. The 

proposed IP algorithm is described below. 

IP with adaptive tree management 

Step 0. Set tree stage, s=1 and future stage, r=1. Set non-improvement counter for 

TAD: nc=0. Set Bs, the list of pending boxes at stage s equal to X, Bs ={X}, and 
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Bs+1=∅.  

Step 1.  COP: If the number of function evaluations or CPU time reaches a given 

limit, or, both Bs=∅ and Bs+1=∅, then stop. 

 CCSP: If the theoretical number of solutions is identified or CPU time reaches 

a given limit, or, both Bs=∅ and Bs+1=∅, then stop.   

Else, if Bs=∅ and Bs+1≠∅, then set s←s+1, set r←s, and continue.  

Pick first box Y in Bs and continue. 

1.1 If Y is infeasible or suboptimal (in the COP), discard Y, and go to Step 

1.  

1.2 If Y is sufficiently small, evaluate m, its mid-point, and if it is a 

feasible improved solution, update CLB, re-set nc ←0, and store m. 

Remove Y from Bs and go to Step 1. (In the CCSP, omit the CLB update 

and store the feasible solution.) 

1.3 Else go to Step 2. 

Step 2. Select variable(s) to partition (use the subdivision direction selection rule IIR). 

Set v = number of variables to partition. 

Step 3. Partition Y into 2v non-overlapping child boxes. Check TAD, if it improves, 

then re-set nc ←0, else set nc ← nc +1. 

Step 4. Remove Y from Bs, add 2v  boxes to Br.  

4.1. If nc >2, apply FSQP to all (previously unprocessed by FSQP) boxes 

in Bs and Bs+1, re-set nc←0. If FSQP is called for the first time in stage 

s, then set r←s+1. Go to Step 1.  
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4.2. Else, go to Step 1. ■ 

The adaptive tree management system in IP is illustrated in Figure 3.4 on a small tree 

where node labels indicate the order of nodes visited. The nodes 3, 5, 6, 8, 9, 11, 12, 

13, 14, 15, 16 are in Stage 1’s list and should be explored before moving to Stage 2. 

All their children are placed in Stage 2’s list after the first FSQP call in Stage 1. There 

might be more than one FSQP calls in Stage 1, this does not affect the placement of 

the children.  

The adaptive tree management strategy proposed here can also be used in non-interval 

partitioning algorithms such as Baron and LGO. It is effective in the sense that it 

allows going deeper into selected promising parent boxes while providing a larger 

perspective on how promising a parent box is by comparing it to all other boxes 

available in the current stage’s box list. 
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Figure 3.5. Implementation of the adaptive iterative deepening procedure. 
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Chapter 4 

Interval Inference for Global Optimization 

This chapter presents the details on Interval Inference Rule (IIR) for solving global 

optimization problems including BCOP, CCSP and COP. It also presents the details 

on Interval Partitioning Algorithms (IPA) for BCOP, CCSP and COP and different 

subdivision direction rules such as Rule A, Rule B, Rule C, Rule D, and Smear Rule.  

4.1. Interval Partitioning Algorithms 

Interval Partitioning Algorithms (IPA) use interval arithmetic (Moore 1966) to 

produce reliable results for constrained and bound constrained optimization (Hansen 

1992, Ratschek and Rokne 1995). Due to their reliability, interval applications take 

place in a wide scope of scientific fields (Kearfott and Kreinovich 1996). In bound 

constrained global optimization problems, an IPA subdivides the given domain into 

smaller subspaces or boxes that are assessed according to their function range 

calculated by using an approximating inclusion function. Based on the function range 

bounds and a known best solution that is updated during the search, some subspaces 

are deleted reliably, because they cannot hold at the global optimum solution (Pinter 

1992, Hammer et al. 1993). Subdivision continues in remaining boxes so that the 

location of the global optimum solution can be enclosed within a small box of a given 

tolerance. The final report contains all such boxes in the given function domain. 

The prototype interval branch and bound algorithm for solving (1.1) is as follows: 

Step 1: Y ← X0, initialize the empty list Lw 

Step 2: Choose the coordinate directions (i.e., Rule A, B, C, D and E)for the splitting 

of Y. 
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Step 3: Split Y normal to the chosen directions, cutting the box a given number of 

times in each direction. Let Y1,…, Ys be the subboxes obtained. 

Step 4: For i = 1 to s do 

4.1 : Delete Yi if it can be proven that Yi contains no optimal solution or 

diminish Yi if it can be proven that the respective part of Yi contains no 

optimizer point. 

4.2 : If Yi is not deleted, then store it (as a whole or diminshed) into working 

list Lw. 

Step 5: Choose a box from Lw and remove it from the working list. Let Y denote the 

chosen box. 

Step 6: While termination criterion does not hold go to Step 2. 

In Step 2 of IPA, subdivision direction selection step, subdivision rules proposed up 

to date are based on criteria such as the width of variable intervals (Rules A and D), or 

estimated function improvement by selected variables (gradient information such as 

Rules B, C and E). The performance of such rules is assessed extensively on standard 

test problems (Ratz and Csendes 1995, Csendes and Ratz 1996, 1997, Csendes et al. 

2000) resulting in the general conclusion that gradient based rules work much better. 

1. Rule A  

This Rule A selects the subdivision direction based on the interval–width (Moore 

1966, Ratschek and Rokne 1988, Ratz and Csendes 1995, Ratz 1996, Berner 1996, 

Csendes and Ratz 1996, 1997, Csendes et al. 2000). According to this rule, the 

coordinate direction with maximum ( )D i value will be selected, and the D(Xi) can be 

defined as in equation (4.1): 

D(Xi) := w(Xi)       (4.1) 
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where, Xi is the variable vector 

It is found that an algorithm with Rule A is convergent both with and without the 

monotonicity test (Ratschek and Rokne 1988, Ratz and Csendes 1995, Csendes and 

Ratz 1997, Csendes et al. 2000). 

2. Rule B 

Hansen (1992) proposes the Rule B, with initiation from G. W. Walster (Ratz and 

Csendes 1995, Ratz 1996, Berner 1996, Csendes and Ratz 1996, 1997, Csendes et al. 

2000). According to this rule, a coordinate direction with maximum ( )D i is chosen for 

subdivision. However, the ( )D i  can be defined as in equation (4.2): 

D(i) :=  w(Fi
′(Xi)) * w(Xi)       (4.2) 

where Fi
′(Xi) is the first order derivative with respect to variable Xi. 

It is also found that this subdivision direction rule can also be carried out for many 

directions in a single iteration step (Csendes and Ratz 1997). This rule becomes 

nonconvergent if the monotonicity test is removed from the algorithm (Csendes and 

Ratz 1997, Csendes et al. 2000). 

3. Rule C 

Ratz proposes the Rule C (Ratz and Csendes 1995, Ratz 1996, Berner 1996, Csendes 

and Ratz 1996, 1997, Csendes et al. 2000), with an underlying idea of minimizing the 

width of the inclusion function. According to this rule, a coordinate direction with 

maximum ( )D i is chosen for subdivision. However, the ( )D i  can be defined as in 

equation (4.3): 

D(i) :=  w (Fi
′(Xi) * (Xi - m(Xi)))      (4.3) 

where Fi
′(Xi) is the first order derivative with respect to variable xi. 
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However, this formulation shows the model algorithm with the direction selection rule 

can be related to Lipschitzian partition methods for global optimization (Pinter 1986, 

1992).  

4. Rule D 

Rule D is a derivative free method such as Rule A, and reflects the machine 

representation of the inclusion function F(X) (Hammer et al. 1993, Ratz and Csendes 

1995, Ratz 1996, Berner 1996, Csendes and Ratz 1996, 1997, Csendes et al. 2000). 

According to this rule, the coordinate direction with maximum ( )D i  will be selected 

for subdivision from the expression (4.4). 

  w(Xi)     if 0∈ Xi   

D(i) := 

  w(Xi) / min {|xi|; xi ∈ Xi }      otherwise 

5. Rule E 

Ratz proposes Rule E (Ratz and Csendes 1995, Ratz 1996, Berner 1996, Csendes and 

Ratz 1996, 1997, Csendes et al. 2000,) similar to Rule C, with an underlying idea of 

minimizing the width of the inclusion function. According to this rule, a coordinate 

direction with maximum ( )D i is chosen for subdivision and the ( )D i  can be defined 

as in equation (4.5): 

D(i) :=  w ((Xi - m(Xi)) (Fi
′(m(X))+0.5 * 

1
( ( )

n

ij
j

F
=

′′∑ X ( Xj – m(Xj)) ))  (4.5) 

where Fi
′(m(Xi)) is the first order derivative with respect to variable midpoint of Xi, 

and 

Fi
′′ (X) is the second order derivative with respect to variable x. 

(4.4) 
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Kearfott and Manuel (1990) propose a new rule known as smear rule for finding the 

roots of nonlinear systems of equations. According to this rule, the variable with the 

largest rate of change (the absolute value of the Jacobian element) multiplied by the 

width of its domain is selected. 

The coordinate of maximum smear is defined to be k such that sk = max 1≤j≤n sj, where 

sj equals to max 1≤i≤n {|Ai,j|}w(Xj). 

In Step 3 of IPA, multi-section of a selected box step, several strategies can be 

applied, such as k-best strategy; subdivision of a single variable’s width into s > 2 

pieces (Csallner et al. 2000a, 2000b, Casado et al. 2001a, 2001b). 

In Step 5 of IPA, the box selection step, several strategies can be applied, such as, 

select the box with best upper bound (Skelboe 1974, Ratschek and Rokne 1988); 

select the box which has been longest in the list (Hansen and Sengupta 1980, Hansen 

1992); and select the box which has maximum width (Hansen and Sengupta1980), 

and so on. 

In Step 6 of IPA (Termination criterion), termination criterion also plays an important 

role in IPA to obtain solutions which are close to the actual solutions.  Kearfott and 

Walster (2000) introduce a new termination criterion, i.e., thickness stopping 

criterion, which can be used for global optimization algorithms using interval 

analysis. The other stopping criteria are a heuristic domain and range stopping 

criteria, which is used to determine the accuracy tolerances (Moore 1966, Neumaier 

1990, Hansen 1992, Ratscheck and Rokne 1995). 

Interval Constraints for CCSP  

The general scheme for solving the interval constraint is as follows. Interval 

techniques for solving CCSP are based on Branch and Prune / Splitting and Filtering 



 

 84

approaches:  

• branching consists of splitting the search space into smaller parts and therefore 

easier to handle;  

• pruning consists of filtering the current box to remove inconsistent elements.  

Splitting is generally carried out by bisecting the domain(s) of the selected 

variable(s). It mostly results in two new domains to filter. In some cases though, it 

may be more efficient to split the current filtered domain in more than two smaller 

boxes (Chabert 2005). The bisection stage results in the creation of so-called child 

boxes. Variable selection is made according to different heuristics, such as choosing 

the variable with the domain of largest width (usually referred to as "largest first" or 

Rule A), or choosing the next variable on the pre-established sequence of variables 

("round-robin"), or even choosing the variable with the largest rate of change (i.e., the 

absolute value of the Jacobian element) multiplied by the width of its domain (“Smear 

rule” by Kearfott and Manuel 1990). 

Pruning / Filtering is performed by using consistency techniques. Basically 

consistency techniques check the satisfaction of the constraints. If the test is negative 

then the current box is discarded. A very naive version of such a technique is the 

following: suppose you want to check the consistency of an equality constraint of the 

form c : f(x)=0 over some box X. If the interval evaluation of f  over X does not 

contain 0, then you can immediately conclude that c  is inconsistent (i.e., is not 

feasible) over X, and you can discard X. Convergence of this method is very slow for 

it totally relies on interval evaluations that are known to overestimate ranges of 

functions. 
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4.2. Basic Terminologies and Definitions 

Definition 4.1 (Continuous real constraint): 

A continuous real constraint is an atomic formula made of expressions and relations 

symbols, such as equality or an inequality.  

 Let c be a real continuous constraint defined over X included in IRn. Let cρ  be the 

subset of IRn satisfying c. Then any element s of X intersected with cρ  is called a 

solution of c. Such elements are also called consistent elements for c. 

As a result, a constraint divides its domain of definition X into two distinct subsets: 

the subset of consistent elements and the subset of inconsistent elements                   

(X/ (IRn
∩ cρ  )). 

Definition 4.2 (Constraint system): 

A constraint system is the conjunction of a set of constraints C={c1,…, cp} defined 

over a set of variables V={ x1,…, xn }, each variable xi defined over a given domain 

Xi of  IR.  

A constraint system is denoted by S= (V, C, X), where X = X1×…×Xn, and the 

corresponding problem to be solved is called a CCSP, usually referred to as CSP. Let 

us note that, when this is not ambiguous, we may refer to a CCSP, S= (V, C, X), 

simply as C.  

The solution set of S  is denoted ρS. A solution of S  is a n-tuple s ∈ X such that, for 

all constraints Cic ∈ , the restriction of s  to the variables V
ic of ic  belongs to 

X
i ci

c j V jxρ ∈∩  
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Definition 4.3 (Interval Constraint):  

An interval constraint is built from an atomic interval formula (interval function) and 

relation symbols, whose semantics are extended to intervals as well. ■ 

A constraint is being defined by its expression (atomic formula and relation symbol), 

variables, and their domains. Moreover, it is considered that an interval constraint has 

interval variables (variables that take interval values), and that each associated domain 

is an interval.  

The main guarantee of interval constraint is that if its solution set is empty, it has no 

solution over a given box Y; then it follows that the solution set of the COP is also 

empty and box Y can be reliably discarded. In a similar manner, if the upper bound of 

the objective function range, ( )F Y , over a given box Y is less than or equal to the 

objective function value of a known feasible solution (the Current Lower Bound, 

CLB), then Y can be reliably discarded since it cannot contain a better solution than 

the CLB.  

Below we formally provide the conditions where a given box Y can be discarded 

reliably based on the ranges of interval constraints and the objective function. 

In a partitioning algorithm, each box Y is assessed for its optimality and feasibility 

status by calculating the ranges for F, G and H over the domain of Y.  

Definition 4.4 (Indeterminate box with regard to optimality):  

If  ( )F Y  ≤ CLB and ( )F Y > CLB, then Y is called an indeterminate box with regard 

to optimality. Such a box holds the potential of containing x* if it is not an infeasible 

box. ■ 
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A box is called as an indeterminate box with regard to optimality when its objective 

function lower bound is less then or equal to the CLB and the upper bound is greater 

then CLB. 

Definition 4.5 (Indeterminate box with regard to feasibility):  

If  ( ( )Gi Y  < 0 AND ( )Gi Y > 0) OR (0∈Hi(Y)≠0) for any i, and other constraints are 

consistent over Y, then Y is called an indeterminate box with regard to feasibility and 

it holds the potential of containing x* if it is not a sub-optimal box. ■ 

Definition 4.6 (Cut-off test based on optimality): 

If ( )F Y  < Current Lower Bound (CLB), then box Y is called a suboptimal box and it 

is deleted because it cannot contain x*.   

Definition 4.7 (Cut-off test based on feasibility): 

If ( )Gi Y > 0 or 0∉Hi(Y) for any i, then box Y is called an infeasible box and it is 

discarded. 

Definition 4.8 (Uncertainty of an indeterminate box with regard to optimality):  

The degree of uncertainty of an indeterminate box with respect to optimality is 

defined as: 

PFY  = ( )F Y  − CLB       (4.6) 

Definition 4.9 (Uncertainty of an indeterminate box with regard to feasibility):  

The degree of uncertainty, PGi
Y (PHi

Y) of an indeterminate inequality (equality) 

constraint with regard to feasibility is defined by equations (4.7) and (4.8), 

respectively.■ 
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PGi
Y  = ( )Gi Y   (4.7) 

PHi
Y  = ( )Hi Y  + | ( )Hi Y |       (4.8) 

Definition 4.10 (Total feasibility uncertainty degree of a box):  

The total feasibility uncertainty degree of a box, INFY, is the sum of uncertainty 

degrees of equalities and inequalities that are indeterminate over Y. ■ 

Definition 4.11 (Feasible box):  

 If ( )Gi Y ≤ 0, and 0 ∈ Hi(Y) = 0, for ∀i, then box Y is a feasible box.  

4.3. New Interval Partitioning Algorithms 

4.3.1. Bound Constrained Optimization Problems 

In each box assessment, the function range estimate F (M) over a sufficiently small 

box M enclosing the mid-point (m(Y)) is calculated. In the assessment of the first box,       

min f(M) becomes the current lower bound (CLB) and each time a better mid-point 

solution is found, CLB is updated.  

IPA continues to subdivide available pending boxes until either they are all deleted or 

interval sizes of all variables in existing boxes are less than a given tolerance, δ. All 

such boxes are reported that may contain x*. In Figure 4.1, a generic pseudocode is 

provided for IPA. 
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Notation :   

WLB: Working List of Boxes;  M : Point interval at the mid-point of a box;  

 F(M) : range estimate at M ;    δ :  tolerance for final interval length 

Void IPA: 

{ 

  Construct tree structure for  f(x); 

  Initialize: initial box = II (X); CLB = -∞; WLB = I I (X); 

  While WLB ≠ φ do 
  { 

   Select a box Y∈ WLB; Calculate F(Y); 

    if ( ( )F Y  > CLB) AND (At least for one variable interval, w(xi) >δ )  

     { 

       if (F (Y) > CLB), then CLB = F (Y); 

       Calculate the mid-point function value, F(M);  

       if (F(M) > CLB), then CLB = F(M); 

       Select subdivision direction;  // Activate Symbolic Interval Inference Rule; 

       Subdivide Y to obtain four sibling boxes: S1, S2, S3, S4; // Multisection - 4 siblings 

      WLB = WLB – {Y}; WLB = WLB + {S1, S2, S3, S4}; 

     } // endif 

    else 

    { 

      if (w(xi)< δ , ∀i), then store Y; WLB = WLB – {Y}; 
     } 

   } // endwhile 

  Report all stored boxes; 

} // endprocedure 

Figure 4.1. Generic pseudocode for IPA. 

 

In essence, IPA aims to discard suboptimal boxes and reduce the number of pending 

boxes with as few function calls as possible. This is facilitated by partitioning 

appropriate variables and generating sub boxes whose overestimation in PY is reduced. 

Then, the algorithm converges fast by discarding suboptimal boxes early and also by 
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partitioning promising boxes in a fitting direction to reach the global basin of 

attraction. While variable selection is made according to this criterion, box selection is 

carried out following a worst-first strategy, i.e., the box with the maximum PY is 

selected first. 

We would like to mention that PY is a traditional box selection index used in IPA. A 

normalized version of this index (the Reject Index) is obtained by dividing PY by w 

(F(Y)) (Casado et al. 2001a. 2001b).  The Reject Index aims at reducing the 

overestimation in smaller boxes with greater uncertainty whereas we target at 

discarding boxes as large as possible. 

4.3.2. Continuous Constraint Satisfaction Problems and Constrained 

Optimization Problems  

IP is a reliable convergent algorithm that sub-divides indeterminate boxes to reduce 

INFY and PFY by nested partitioning. The contraction and the α-convergence 

properties enable the reduction in the uncertainty levels. The reduction in the 

uncertainty levels of boxes finally lead to their elimination due to sub-optimality or 

infeasibility while helping IP in ranking remaining boxes in a better fashion.  

In the COP, a box that becomes feasible after nested partitioning still has uncertainty 

with regard to optimality unless it is proven that it is sub-optimal. The convergence 

rate of IP might be very slow if we require nested partitioning to reduce a box to a 

point interval that is the global optimum. Hence, since a box with a high PFY holds 

the promise of containing the global optimum, we propose to use a local search 

procedure that can identify stationary points in such boxes.  In a similar fashion, we 

use the local search procedure to identify feasible solutions in indeterminate (with 

regard to feasibility) boxes in the CCSP. 
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In the COP, IP continues to subdivide available indeterminate and feasible boxes until 

either they are all deleted or interval sizes of all variables in existing boxes are less 

than a given tolerance, δ. Termination can also be forced by limiting the number of 

function evaluations and/or CPU time. Here, we choose to terminate IP when the 

number of function calls outside the local search procedure reaches a given limit or 

when the CPU time exceeds the maximum allowable time. In the CCSP, IP can 

terminate either when there are no more indeterminate boxes or when the theoretical 

number of feasible solutions is identified. Here, we stop when the number of feasible 

solutions identified reaches the theoretically known number of solutions or when a 

CPU time limit is reached. 

In the following, we describe our proposed IP that has a flexible stage-wise tree 

management feature. This stage-wise tree also enables us to apply the best-first box 

selection rule within a restricted sub-tree (economizing memory usage) as well as to 

invoke local search in a set of boxes. 

The tree management system in the proposed IP maintains a stage-wise branching 

scheme that is conceptually similar to the iterative deepening approach (Körf 1985). 

The iterative deepening approach explores all nodes generated at a given tree level 

(stage) before it starts assessing the nodes at the next stage. Exploration of boxes at 

the same stage can be done in any order, the sweep may start from best-first box or 

the one on the most right or most left of that stage.  On the other hand, in the proposed 

adaptive tree management system, a node (parent box) at the current stage is 

permitted to grow a sub-tree forming partial succeeding tree levels and to explore 

nodes in this sub-tree before exhausting the nodes at the current stage. In the COP, if 

a feasible solution (CLB) is not identified yet, boxes in the sub-tree are ranked 

according to ascending INFY, otherwise they are ranked in descending order of ( )F Y . 
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In the CCSP, boxes are simply ranked according to descending INFY. A box is 

selected among the children of the same parent according to either box selection 

criterion, and the child box is partitioned again continuing to build the same sub-tree. 

This sub-tree grows until the Total Area Deleted (TAD) by discarding boxes fails to 

improve in the two consecutive partitioning iterations in this sub-tree. Such failure 

triggers a call to local search where all boxes not previously subjected to local search 

are processed by the procedure Feasible Sequential Quadratic programming (FSQP) 

(Zhou and Tits 1996, Lawrence et al. 1997). The boxes that have undergone local 

search are placed back in the list of pending boxes and exploration is resumed among 

the nodes at the current stage. In the COP, feasible and improving solutions found by 

FSQP are stored (that is, if feasible solutions with a better objective function value is 

found, CLB is updated and the solution is stored). In the CCSP, all feasible point 

solutions and sub-spaces are stored. 

The above adaptive tree management scheme is achieved by maintaining two lists of 

boxes, Bs and Bs+1 that are the lists of boxes to be explored at the current stage s and at 

the next stage s+1, respectively. Initially, the set of indeterminate or feasible boxes in 

the pending list Bs consists only of X and Bs+1 are empty. As child boxes are added to 

a selected parent box, they are ordered according to the current ranking criterion. 

Boxes in the sub-tree stemming from the selected parent at the current stage are 

explored and partitioned until there is no improvement in TAD in two consecutive 

partitioning iterations. At that point, partitioning of the selected parent box is stopped 

and all boxes that have not been processed by local search are sent to FSQP module 

and processed to identify feasible and improving point solutions if FSQP is successful 

in doing so. It is noted that, whether or not FSQP fails to find an improving solution, 

IP will continue to partition the box since it passes both cutoff tests as long as it has a 



 

 93

potential to contain an improving solution. Finally, the algorithm encloses potential 

improving solutions in sufficiently small boxes where FSQP can identify them. Thus, 

FSQP acts as a catalyst that occasionally scans larger boxes to identify improving 

solutions at the earlier stages of the search. From that moment onwards, child boxes 

generated from any other selected parent in Bs are stored in Bs+1 irrespective of further 

calls to FSQP in the current stage. When all boxes in Bs have been assessed 

(discarded or partitioned), the search moves to the next stage, s+1, starting to explore 

the boxes stored in Bs+1.  

In this manner, a lesser number of boxes (those in the current stage) are maintained in 

primary memory and the search is allowed to go down to deeper levels within the 

same stage, increasing the chances to discard boxes or identify stationary points. On 

the other hand, by enabling the search to also explore boxes horizontally across at the 

current stage, it might be possible to find feasible improving solutions faster by not 

partitioning parent boxes that are not so promising (because we are able to observe a 

larger number of boxes).  

The tree continues to grow in this manner taking up the list of boxes of the next stage 

after the current stage’s list of boxes is exhausted. The algorithm stops when the 

stopping criteria mentioned above for the COP/ CCSP are satisfied. The proposed IP 

algorithm is described below: 

IP with adaptive tree management 

Step 0. Set tree stage, s=1, and future stage, r=1. Set non-improvement counter for 

TAD: nc=0. Set Bs, the list of pending boxes at stage s equal to X, Bs ={X}, 

and Bs+1=∅.  

Step 1.  COP: If the number of function evaluations or CPU time reaches a given 
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limit, or, both Bs=∅ and Bs+1=∅, then stop. 

 CCSP: If the theoretical number of solutions is identified or CPU time reaches 

a given limit, or, both Bs=∅ and Bs+1=∅, then stop.   

Else, if Bs=∅ and Bs+1≠∅, then set s←s+1, set r←s, and continue.  

Pick first box Y in Bs and continue. 

1.1 If Y is infeasible or suboptimal (in the COP), discard Y, and go to Step 

1.  

1.2 If Y is sufficiently small, evaluate m, its mid-point, and if it is a 

feasible improving solution, update CLB, re-set nc ←0, and store m. 

Remove Y from Bs and go to Step 1. (In the CCSP, omit the CLB update 

and store the feasible solution.) 

1.3 Else go to Step 2. 

Step 2. Select variable(s) to partition (use the subdivision direction selection rule 

IIR). Set v = number of variables to partition. 

Step 3. Partition Y into 2v non-overlapping child boxes. Check TAD, if it improves, 

then re-set nc ←0, else set nc ← nc +1. 

Step 4. Remove Y from Bs, add 2v  boxes to Br.  

4.1. If nc >2, apply FSQP to all (previously unprocessed by FSQP) boxes 

in Bs and Bs+1, re-set nc←0. If FSQP is called for the first time in stage 

s, then set r←s+1. Go to Step 1.  

4.2. Else, go to Step 1. ■ 

The adaptive tree management system in IP is illustrated in Figure 3.4 on a small tree 

where node labels indicate the order of nodes visited.  
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4.4. Framework of Interval Inference Rule (IIR) 

4.4.1. General Overview  

The order in which variable domains are partitioned has an impact on the performance 

of IP. In general, variable selection is made according to widest variable domain rule 

or largest function rate of change in the box. Here, we develop a new numerical 

subdivision direction selection rule, Interval Inference Rule (IIR), to improve IP’s 

performance by partitioning in parallel, those variable domains that reduce PFY and 

INFY in at least one immediate child box. (The related illustration of the latter 

reduction and exceptional situations where such reduction may not be achieved are 

found in the section 4.6 of this chapter.) Hence, new boxes formed with an 

appropriate partitioning sequence result in diminished uncertainty caused by 

overestimation. Before IIR is applied, the objective f and each constraint g and h are 

interpreted as binary trees that represent recursive sub-expressions hierarchically. 

Such binary trees enable interval propagation over all sub-expressions of the 

constraints and the objective function (Benhamou et al. 1994). Interval propagation 

and function trees are used by Kearfott (1991) in improving interval Newton approach 

by decomposition and variable expansion, by Smith and Pantelides (1999) in 

automated problem reformulation, by Sahinidis (2003) and by Talawarmani and 

Sahinidis (2004) where feasibility based range reduction is achieved by tightening 

variable bounds. 

After interval propagation is carried out over the sub-expressions in a binary tree, IIR 

traverses this tree to label its nodes so as to identify the pair of variables (source 

variables) that are most influential on the constraint’s or the objective’s uncertainty 

degree. This pair of variables are identified for each constraint and the objective 
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function, and placed in the pool of variables whose domains will be possibly 

partitioned in the next iteration. In the COP, we make sure that the pool at least 

contains the source variables for the objective function and therefore, the number of 

variables to be bisected in parallel is at least two. The total pool resulting from the 

traversal of f, g and h is screened and its size is reduced by allocating weights to 

variables and re-assessing them.  

4.4.2. Interval Inference Rule  

The IIR Framework comprises of six basic components such as Parser, Interval 

Inference Rule Base, IA partitioning coordinator, Interval Arithmetic Library, Local 

Search Methods, and Branching Master. The integrated framework of IIR is illustrated 

in Figure 4.2 and the detailed description of each component is given as follows. 
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Figure 4.2. Integrated Framework of Interval Inference Rule 
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1. Parser 

The parser is activated once before IPA is executed. It dissects the function expression 

and passes the output to the tree builder.  The parser comprises of three sub-

components: Expression parser, Expression translator, and Binary tree builder shown 

in Figure 4.3. 

 

 

 

Figure 4.3. Sequence of parser functions 

i. Expression Parser parses a given infix expression into machine understandable 

format as array of strings. It converts variable domains (x = [ X , X ]) into VarName 

(x), and VarValues ([ X , X ]). Expression parser also parses each constraint into three 

parts that are constraint expression, type of constraint (direction of inequality or 

equality), and the right hand side constant. The objective function is parsed into two 

parts, type of objective function, i.e., minimization (min) or maximization (max), and 

objective function expression. 

ii. Expression Translator converts infix expressions obtained from Expression 

parser into post-fix expressions and passes the post-fix expressions to the tree 

builder.  

iii. Binary Tree Builder 

The binary tree builder constructs a binary tree using the information obtained from 

the parser. A binary tree that represents the function with all its subexpressions is then 

constructed. The contribution of subexpressions and atomic elements (variables) to 

Function 
f(x) or g(x) 

or h(x) 
and x 

domain 

Expression 
parser 

Expression 
translator 

Binary tree 
builder 
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the function range are recursively calculated by calling an Interval Library at each 

(molecular) level of the hierarchical binary tree so that the impact of all terms can be 

assessed in descending order of complexity.  

2. Interval Inference Rule Base 

Interval Inference Rule Base is designed for identifying the variables to be re-

partitioned for each constraint and objective functions whichever is applicable for a 

given optimization problem. The identified variables will be returned to IA 

partitioning coordinator for further processing. It comprises of two basic procedures: 

Interval propagation over a binary tree and IIR labeling procedure. 

a. Interval Propagation over a Binary Tree 

Before the labeling process can be applied on a constraint expression, it has to be 

parsed and converted into a binary tree where intervals at sub-expression levels are 

calculated in a bottom to top fashion starting from atomic levels (variables or 

constants).  

A binary tree representing a constraint is built as follows. Leaves of the binary tree are 

atomic elements, i.e., they are either variables or constants. All other nodes represent 

binary expressions of the form (Left Θ Right). A binary operator is an arithmetic 

operator (*, +, -, / ) having two branches (“Left”, “Right”) that are themselves 

recursive binary sub-trees. However, mathematical functions such as ln, exp, sin, etc. 

are unary operators. In such cases, the argument of the function is always placed in 

the “Left” branch. For instance, the binary tree for the expression in equation (4.9) is 

illustrated in Figure 4.4. 

1-((10*x1)+(6*(x1*x2))-(6*(x3*x4)))  (4.9) 

Variable intervals in the box are X1 = [-2.0, 4.0], X2 = [0.0, 10.0], X3 = [-2.0, 1.0], and  
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X4 = [-10.0, 0.0]. In Figure 4.4, dotted arrows linking arguments with operator nodes 

show how intervals are propagated starting from the bottom leaves (variables). Once a 

level of the tree is completed and corresponding sub-expression intervals are 

calculated according to basic interval operations, they are linked by next level 

operators. This procedure goes on until the top most “root” node representing the 

whole constraint is reached resulting in the constraint range of [-339, 261]. 

 
Figure 4.4. Interval propagation for the expression  

“1-((10*x1)+(6*(x1*x2))-(6*(x3*x4)))”. 
 

b. IIR Labeling Procedure 

Suppose a binary tree is constructed for an expression and its source variables are to 

be identified over a given box Y. This is accomplished by a labeling procedure via 

tree traversal. Let us assume the expression given in the equation (4.9) is an equality 

constraint. In Figure 4.5, the path constructed by IIR is illustrated graphically on the 

constraint given in equation (4.9). Straight lines in the figure indicate the propagation 

tree, dashed arrows indicate binary decisions, and bold arrows indicate the path 
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constructed by IIR. 

 

 

 

 

 

 

 

 

 
 

Figure 4.5. Implementation of IIR_Tree over the binary tree for   
“1-((10*x1)+(6*(x1*x2))-(6*(x3*x4)))=0” 

 
For illustrating how IIR works on a given constraint over domain Y, we introduce the 

following notation. 

Dk: a parent sub-expression at tree level k (k=0 is root node),  

Lk+1 and Rk+1: immediate Left and Right sub-expressions of Dk at level k+1, 

,[ ]k kD D : interval bounds of parent sub-expression Dk ,  

1 1,[ ]k kL L+ +  and 1 1,[ ]k kR R+ + : interval bounds of immediate left and right sub-

expressions at level k+1, and 

Λk: labeled bound at level k. 

IIR starts by labeling 0D if the expression is an inequality constraint or the expression 

is an objective function. The target is ( )Gi Y  for inequalities so as to reduce PGi
Y, 
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and in equalities the target is the max {| 0D |, 0D } (i.e., max { ( )H i Y , ( )Hi Y } is 

targeted to reduce PHi
Y).  

In summary, 

Type of Expression Target at root node 

Objective Function (Maximization) 0D   i.e., ( )F Y  

Inequality constraint ( ≤ ) 0D  i.e., ( )Gi Y  

Equality constraint ( = ) 
max {| 0D |, 0D } 

(i.e., max { ( )H i Y , ( )Hi Y } 

Suppose, we have an equality constraint in equation (4.9), we label the bound that 

gives max {⏐-339⏐, ⏐261⏐], that is, we label “-339” as Λ0 at the root node. Next, we 

determine the pair of interval bounds 1 1{ }L R−  which results in “-339”. Hence, 

1 1L RΘ  = 0D . We then compare the absolute values of individual bounds in this pair 

and take their maximum as the label at level k+1. That is, Λ1=max {|
1

L |, |
1

R |} =
1

R = 

340.  A formal description of IIR rule is given in a pseudocode in Figure 4.6.   

The procedure is applied recursively from top to bottom; each time searching for the 

bound pair resulting in the labeled bound Λk+1 till a leaf (a variable) is hit. Once this 

forward tree traversal is over, all leaves in the tree corresponding to the selected 

variable are set to “Closed” status. The procedure then backtracks to the next higher 

level of the tree to identify the other leaf in the couple of variables that produce the 

labeled bound. IIR_Tree’s pseudocode is given in Figure 4.7. 
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Node_Type IIR _Tree (Node_Type Start_Node) { 
 If ((Count>2) OR (All leaves are “Closed”)) exit; 
 Select_Node = IIR (Start_Node);     /*calls procedure IIR */ 
 If (Select_Node. Status = “Open Node”)  
     Start_Node = IIR_Tree(Select_Node); 
 Else if (Select_Node. Status = “Open Leaf”)  /*found a source variable*/ 
     { 
        Store source variable “Open Leaf”; 

    Close all leaves of type “Open Leaf”; 
        Count++; 
        Start_Node = IIR_Tree (Next_Up(Select_Node));   /*backtrack to identify 
second source*/ 
      } 
     Else Start_Node = IIR_Tree (Next_Up(Select_Node)); /*backtrack to identify 
second source*/ 
 Return Start_Node; 
} 

Figure 4.6. Procedure IIR _Tree: Recursive tree traversal of IIR.(Input: Root node; 
Output: pair of source leaves - variables) 

 

Node_Type IIR (Node_Type Node) { 
   if (node_level k = 0), bnd = ( )G Y ; /* if equality bnd = max { ( )iH Y , ( )iH Y } 

                                                                  if objective function bnd = ( )F Y */ 
    else bnd = Λk; 
  Identify the pair a Θ b = 
       { 1 1{ }k kL R+ +Θ ∨ 1 1{ }k kL R+ +Θ ∨ 1 1{ }k kL R+ +Θ ∨ 1 1{ }k kL R+ +Θ } : a Θ b = bnd; 
   Λk+1 = max {|a|, |b|};   
   if Λk+1

  = | a |, then return Left branch node as labeled at level k+1; 
     else then return Right branch node as labeled at level k+1; 
 } 

Figure 4.7. Pseudocode for IIR (Input: node at level k; Output: labeled node at level 

k+1) 

All steps of the labeling procedure carried out in the example are provided below in 

detail.  

Level 0: 0 0[ , ]D D = [-339, 261]. Λ0 = 0D .  
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a Θ b  = 1 1L R− = {1-340} = -339. Λ1 = max {|
1

L |, |
1

R |} = max {|1 |, |340|} = 340 

=
1

R . 

Level 1: 1 1[ , ]D D = [-260, 340] 

a Θ b = {-20+(-240) or 40+300} = 340 ⇒ a Θ b=
2 2L R+ . Λ2  = max {|

2
L |, |

2
R |}  

= max {|40|, |300|} = 300 ⇒ 
2

R . 

Level 2: 2 2[ , ]D D  = [-240, 300] 

a Θ b =  { (-120)-120 or 240-(-60) } = 300 ⇒ a Θ b=
3 3L R− . Λ3  = max {|

3
L |, | 3R |} 

 = max {|240|, |-60|} = 240 ⇒ 
3

L . 

Level 3: 3 3[ , ]D D  = [-120, 240] 

a Θ b =  {6*(-20) or 6*40 } = 240 ⇒ a Θ b=
4 4
*L R . Λ4  = max {| 

4
L |, | 

4
R |} 

 = max {|6|, |40|} = 40 ⇒
4

R . 

Level 4: 4 4[ , ]D D  = [-20, 40] 

a Θ b =  {-2*0 or -2*10 or 4*0 or 4*10 } = 40 ⇒ a Θ b=
5 5
*L R . Λ5   

= max {| 
5

L |, | 
5

R |} = max {|4|, |10|} = 10 ⇒
5

R . 

The bound 
5

R  leads to leaf x2. The leaf pertaining to x2 is “Closed” from here 

onwards, and the procedure backtracks to Level 4. Then, the labeling procedure leads 

to the second source variable, x1. 

Note that the uncertainty degree of the parent box is 600 whereas when it is sub-

divided into four sibling boxes by bisecting the two source variables, the uncertainty 

degrees of sibling boxes become 300, 330, 420, and 390. If the parent box were sub-

divided using the largest width variable rule (x2 and x4), then the sibling uncertainty 

degrees would have been 510, 600, 330 and 420. 
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3. IA Partitioning Coordinator 

The binary tree structure is transferred to the Interval Inference Rule base component 

for identifying the subdivision direction selection through the IA partitioning 

coordinator. It also coordinates the activities between the components such as 

Branching Master, Interval Library, Local Search Methods (FSQP), Working List 

Box (WLB), Feasible or Pending Box Repository (FBR / PBR), and Discard Bin. IA 

Partitioning Coordinator comprises of five sub-components such as Box Ranker, Tree 

Selector, Termination rule, variable screener, and box discarder.  

i. Box Ranker 

The sibling boxes generated from the Branching Master will be returned to the IA 

Partitioning Coordinator for inserting into the WLB. The Box ranker subcomponent is 

designed to rank the WLB based on the following box ranking strategies:  

1. Ranking Based on Degree of Uncertainty 

This strategy is applicable for BCOP and CCSP problems. The degree of uncertainty 

is defined as the PFY and TINFY for BCOP and CCSP problems respectively.  

Degree of uncertainty with regard to optimality: PFY  = ( )F Y  − CLB   

Degree of uncertainty of an inequality constraint:  PGi
Y  = ( )Gi Y     

Degree of uncertainty of an equality constraint:  PHi
Y  = ( )Hi Y  + | ( )Hi Y |       

Total degree of uncertainty: TINFY  = ∑ i∈ all pending constraints( PGi
Y + PHi

Y) 

where  

F, G, H :  the objective function, inequality and equality constraints respectively. 

CLB  : Current Lower bound 
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In case of Worst-first box selection strategy, the box with maximum degree of 

uncertainty will be selected for re-partitioning in the next iteration. However, in case 

of best-first strategy, a box with minimum degree of uncertainty will be selected for 

re-partitioning in the next iteration. 

2. Ranking Based on Single Criterion 

This strategy is applicable only to COP problems. The boxes are ranked based on the 

following criteria: 

Criteria 1: If there is an initial feasible solution found for the given COP problem, and 

then sort the boxes in descending order of ( )F Y . However, ties in ( )F Y  are resolved 

according to the minimum TINFY. 

Criteria 2: If there is no initial feasible solution found for the given COP problem, 

then sort the boxes in ascending order of TINFY. However, ties in TINFY are resolved 

according to the maximum ( )F Y . 

3. Ranking Based on Static Penalty 

This strategy is applicable only to COP problems. The boxes are ranked based on the 

following merit function value: 

Merit function value (MFV)= | ( )F Y | + ∑ i∈ all pending constraints(PGi
Y)2 + (PHi

Y)2 

According to this strategy, sort the boxes in the descending order of MFV.  

ii. Tree Selector 

Tree Selector subcomponent will influence the extent of repartitioning of a new box 

picked up from working list (WLB) and is based on the following tree management 

systems: 
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1. Worst-first Tree Management 

This box selection strategy is applicable for BCOP, and CCSP. 

According to this tree management, the boxes are selected based on the maximum PY 

and maximum TINFY for BCOP and CCSP respectively. 

2. Best-first Tree Management  

This box selection strategy is applicable only for COP. The box selection is carried 

out following a best-first strategy, i.e., the box with the least merit function as defined 

in the Box ranker is selected first. A detailed description of the above tree 

management system is provided in the previous chapter (i.e., Chapter 3 under Pure 

Heuristic Search). 

3. Depth-first Tree Management  

This strategy is applicable only for COP and CCSP. A detailed description of the 

above tree management system is provided in the previous chapter (i.e., Chapter 3 

under Depth-First Search). 

4. New Iterative deepening (applicable for COP and CCSP) 

This strategy is applicable only for COP and CCSP. A detailed description of the 

above tree management system is provided in the previous chapter (i.e., Chapter 3 

under Adaptive tree management). 

 

iii. Termination Rule 

The Termination Rule plays an important role in IPA to obtain solutions which are 

close to the actual solutions. This sub-component defines the constraint satisfaction 

tolerance, box elimination tolerance, maximum CPU time allocation, and the 
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Separation distance between solutions. This particular is responsible for termination 

of a given algorithm defined for solving BCOP, CCSP and COP problems. 

In case of bound constrained optimization problems, a run is completed when for all 

non-discarded pending boxes the difference of the function upper bound over the box 

to the current lower bound (|CLB – ( )F X |) is less than 1 x 10-13.  

The other termination options are: 

Box elimination tolerance     : 0.0 

Maximum CPU time allowed (seconds)  : 300 seconds on 2 GB RAM, 2.4 GHz  

Intel Xenon CPU, under Windows OS system. 

In case of CCSP, a run is completed when all solutions or a user defined number of 

solution for a given constraint system is found or the indeterminate boxes list (i.e., all 

non discarded pending boxes list) size equals to zero. 

The other termination options are: 

Box elimination tolerance   : 0.0  

Maximum CPU time allowed (in STU’s) : 0.771 Standard Time Units (STU) 

The other options are: 

Maximum of subdivision direction selected  : 8  

Constraint satisfaction tolerance   : ≤ 1E-8 

Separation distance between solutions  : ≥1E-6 

In case of COP, a run is completed when the number of function evaluation reaches 

2000*(Dimension of the problem + Total number of constraints) or the indeterminate 

boxes list size equals to zero. 
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The other termination options are: 

Box elimination tolerance   : 0.0 

Maximum CPU time allowed (in STU’s) : 2.827 Standard Time Units (STU) 

(Note: 1 Standard Time Unit = (CPU Time in seconds for a given problem / Time 

required to complete the Shekel CPU (Törn and Zilinskas 1989, Scherbina et al. 

2002)) 

The other options are: 

Maximum of subdivision direction selected  : 6  

Constraint satisfaction tolerance   : less then or equal to 1E-6 

Separation distance between solutions  : greater then or equal to 1E-6  

iv. Variable Screener (Applicable for COP and CCSP) 
 

The variables identified for each constraint and objective function (if applicable) by 

the Interval Inference Rule Base will be transferred back to the IA Partitioning 

Coordinator and to a list. The list of selected subdivision directions is re-screened by a 

Symbolic priority allocation defined as follows.  

In case of CCSP: 

IIR is applied to every constraint in the CCSP to identify a pair of source variables for 

each. The resulting set of variables, denoted by V, might be large, leading to a wide 

set of sibling boxes generated in parallel. We develop a symbolic priority allocation 

scheme to narrow down the size of V. A weight wj is assigned to each variable xj∈ V 

and the average w  is calculated. The final set of variables to be re-partitioned in the 

next iteration of IPA is composed of all xj∈ V with wj > w . However, the maximum 
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number of variables that can be selected for re-partition must be less then or equal to 

six and eight for COP and CCSP respectively.   

Here, wj is defined as a function of several criteria: PGi
Y (PHi

Y) of constraint gi for 

which xj is identified as a source variable, the number of times xj exists in gi, and total 

number of interactive terms in which xj is involved within gi. Furthermore, the 

existence of xj in a trigonometric and even power sub-expression in gi is included in 

wj by inserting corresponding flag variables. When a variable xj is a source variable to 

more than one constraint, the weight calculated for each such constraint is added to 

result in a final wj, defined in equation (4.10). 

[ / / / / ] / 5max max
i iw PH PH PG PG e E a A t pi ICj ji j ji j ji jiY Yj= + + + + +∑ ∈  

 (4.10) 
where: 
 
ICj  : set of indeterminate constraints (over Y) where xj is a source variable, 

TIC  : total set of indeterminate constraints, 

PHmax   : { }imax PH Y
i TIC∈

, 

PGmax  : { }imax PG Y
i TIC∈

, 

eji       : number of times xj exists in constraint i∈ICj, 

Ej       : { }max e ji
i ICj∈

, 

aji         : number of interactive terms xj is involved in constraint i∈ICj, 

Aj  : { }

j

max a ji
i IC∈

, 

tji    : binary parameter indicating that xj exists in a trigonometric or non-

polynomial expression in constraint i∈ICj, and 

pji    : binary parameter indicating that xj exists in an even power or abs 

expression in constraint i∈ICj. 

This weighting method is illustrated on a CCSP with 4 variables and 3 equalities. The 

first constraint is the expression given in equation. (4.9). The other two constraints are 
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provided in equations (4.11) and (4.12). Variable domains are as listed for equation 

(4.9).  

(6*(x1*x4))+(6*(x2*x3))- (10*x3)-4 = 0                      (4.11) 

 

(sin(x1*x2)*cos((x1
2)-x2))+ (x1* x4) = 0                      (4.12) 

 

In Table 4.1, we provide a tabulated summary of symbolic characteristics pertaining 

to each variable and each constraint. This information is used in calculating wj. 

The pairs of maximum impact variables found for each constraint  are (x1, x2), (x1, x4) 

and (x1, x4) for the first, second and third constraints, respectively. The set V  consists 

of { x1, x2, x4}. A sample weight calculation for x1 in the first constraint is given as 

6 0 0 2 1 0 0
6 0 0 3 3 1 1 0 .4

5

⎛ ⎞+ + + +⎜ ⎟
=⎜ ⎟

⎜ ⎟
⎝ ⎠

. 

 Constraint 
No. (i) xj  eji aji   pji   tji [ (Y), (Y)]H Hi i  iPH Y  

x1 2 1 0 0 
x2 1 1 0 0 
x3 1 1 0 0 Constraint 1 

x4 1 1 0 0 

[-339,261] 261+339=600 

x1 1 1 0 0 
x2 1 1 0 0 
x3 2 1 0 0 Constraint 2 

x4 1 1 0 0 

[-374,196] 374+196=570 

x1 3 3 1 1 
x2 2 2 0 1 
x3 0 0 0 0 Constraint 3 

x4 1 1 0 0 

[-41,21] 41+21=62 

Table 4.1. Summary of symbolic characteristics pertaining to each variable and each 
constraint 

 

The weight calculation of each variable in each constraint and their final weights are 

indicated in Table 4.2. 
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Variable Weight in 
Constraint 1 

Weight in 
Constraint 2 

Weight in 
Constraint 3 

Total Variable 
Weight (wj) 

x1  0.4 0.32 0.82 1.54 
 x2 0.40 0.59 0.42 1.41 
 x4 0.60 0.59 0.42 1.61 

Average weight 1.521 

Table 4.2. Weight calculation of each variable in each constraint and their final 

weights 

Consequently, (x1, x4) are selected for re-partitioning. This results in three sibling 

boxes whose sum of IFY is indicated in bold in the table below (2nd column). One 

sibling box is found to be infeasible and discarded. 

For comparison purpose, we also show the sum of IFY over sibling boxes that would 

result from re-partitioning other pairs of variables. It is observed that total IFY of the 

pair (x1, x4) is lower than all other variable couples. 

Selected variables          (x1, x4) (x1, x2) (x1, x3) (x2, x3) (x2, x4) (x3, x4) 

Total IFY of sibling 
boxes 

2141 3088 2758 3786 3778 3728 

 

In case of COP 

In each indeterminate box assessment, IIR is applied to every constraint in the COP to 

identify a pair of source variables. The resulting set of variables, denoted by V. In 

addition to that, if there is an initial feasible solution found then the IIR is applied to 

the objective function in the COP to identify a pair of source variables, denoted by Vs.  

However, in each feasible box assessment, IIR is applied to only objective function in 

the COP to identify a pair of source variables, denoted by Vs. 

 The resulting set of variables, denoted by V, might be large, leading to a wide set of 

sibling boxes generated in parallel. The symbolic priority allocation scheme defined 

as above is applied to narrow down the size of V, and the maximum of number of 
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variables selected from V is (6-size of Vs), denoted by Vf. The final set of variables 

selected for re-partitioning the box assessment is the set of Vf and Vs. 

v. Box Discarder (Applicable for COP and BCOP) 
 

The Box discarder sub-component is designed for COP and BCOP problems. The 

main purpose of this component is to discard the sub-optimal boxes from the list of 

indeterminate boxes to Discard Bin. This can also be called as cut-off test based on 

optimality. 

The cut-off test is performed based on the following criterion: 

Criteria 1: A box is said to be discarded if the difference of the function upper bound 

over the box to the current lower bound (|CLB – ( )F X |) is less than 1 x 10-13.  

Criteria 2: A box is said to be discarded if the function upper bound over the box is 

strictly less than the current lower bound ( ( )F X  < CLB). 

4. Interval Arithmetic Library 

IA partitioning coordinator calls the Interval Arithmetic Library (Profil / Bias) to 

perform the interval arithmetic operations to calculate the expression and 

subexpression at each level of hierarchical binary tree. The information obtained from 

the Interval Arithmetic Library will be transferred to the Interval Inference Rule Base 

for the selection of the subdivision directions. 

5. Local Search Method (FSQP) 

IA partitioning coordinator triggers a call to Local Search Method where all boxes not 

previously subjected to local search are processed by the Feasible Sequential 

Quadratic programming procedure when the Total Area Deleted (TAD) by discarding 

boxes fails to improve in the two consecutive partitioning iterations in a given sub-
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tree. The solution identified by the Local Search Method will be stored in FBR / PBR 

through the IA partitioning coordinator.  

6. Branching Master 

The IA partitioning coordinator activates the Branching Master for implementing the 

selected subdivision direction. Once sibling boxes are generated, they are returned to 

the IA partitioning coordinator for placement in the Pending/Feasible Box Repository, 

PBR/FBR, or discarded if infeasible. WLB is also updated if sibling boxes are fit to be 

re-partitioned. 

The proposed interval subdivision direction selection rules can be well inserted into 

the directed acyclic graph framework developed by the COCONUT project (Schichl 

and Neumaier 2005). 

4.5. New variant of IIR (IIR_Widths) 
 
As an alternative to the above described rule, IIR, we have also developed another 

rule (called IIR_Widths), that chooses that branch of the computation tree which has 

the largest width of the expression inclusion related to the given node. In case the two 

widths are equal, we follow the branch, which belongs to the above given symbolic 

inference. This new variant is implemented for solving bound constrained 

optimization problems. 

Let us consider the following expression given in equation (4.13) for illustration of 

IIR and IIR_Widths on bound constrained optimization problem: 

1 2 3 4 1 3(( )*( )) ( )x x x x sin x x+ + + +    (4.13) 
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4.5.1. An Illustration of IIR and IIR_Widths Procedures 
 

Suppose we have the example given in Figure 4.8 with the expression interval [-166, 

451]. Then, “451” is selected as the labeled bound Λ0 at the root node. In IIR, we next 

determine which pair of interval bounds ({ + }1 1L R , { }1 1L + R , { }1 1L + R , { }1 1L + R ) 

results exactly in 0D . The pair of interval bounds that provides 451 is (450, 1) since         

“450+1= 451”. Hence, Θ1 1L R = 0D . We then compare the absolute values of individual 

bounds in this pair and take their maximum as the label at level k+1. Λk+1=max 

{ 1 1L ,R }= 1L = 450. All steps of IIR_Tree for IIR and IIR_Widths are provided below in 

detail and decisions are illustrated in Figures 4.8 and 4.9 with bold arrows 

respectively. 

 
Figure 4.8. Demonstration of the run of IIR on the ((x1+x2)*(x3+x4)) + sin (x1+x3) 
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Figure 4.9. Demonstration of the run of IIR_Widths on the ((x1+x2)*(x3+x4)) + sin (x1+x3). 

 

In case of IIR, this leads to 3R , a bound of leaf x2. The leaf pertaining to x2 is 

“Closed” from here onwards, and the procedure backtracks to Level 2. Then, IIR leads 

to the second source variable, x1. 

IIR IIR_Widths 

Level 0: [ ]0 0D ,D = [-166, 451] 

Λ0 = 0D .  

a Θ b = {(-165+1) or (450+1) or (-165-1) or 
(450-1) } 

 = 451. 

Hence, a Θ b= 1 1
L + R , and 

Λ1 = max {| 1L |, | 
1

R |} = max {|450 |, |1|} 

 = 450 = 1L . 

Level 1: [ ]1 1D ,D = [-165, 450] 

a Θ b = {(-11*2) or (30*2) or (-11*15) or 
(30*15)} 

Level 0: [ ]0 0D ,D = [-166, 451], Λ0 = 0D . 

w(L1) = 615 and w(R1) = 2. Hence, 

Λ1 = max { w(L1), w(R1) } = 615 = L1. 

Level 1: [ ]1 1D ,D = [-165, 450] 

w(L2) = 41 and w(R2) = 13. 

Λ2 = max { w(L2), w(R2) } = 41 = L2. 

Level 2: [ ]2 2D ,D  = [-11, 30] 

w(L3) = 11 and w(R3) = 10. 

Λ3= max { w(L3), w(R3) } = 11 = L3. 
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 = 450 

⇒ a Θ b = 2 2
L * R , 

Λ2  = max {| 2L |, |
2

R |} = max {|30|, |15|} = 
30 ⇒ 2L . 

Level 2: [ ]2 2D ,D  = [-11, 30] 

a Θ b =  {(-1-10) or (-1+20) or (10+20) or 
(10-10)} 

 = 30 

⇒ a Θ b = 3 3
L + R , 

Λ3  = max {| 3L |, | 3R |} = max {|10|, |20|} = 
20 ⇒ 3R . 

 

In case of IIR_Widths, this leads to L3, a bound of leaf x1. The leaf pertaining to x1 is 

“Closed” from here onwards, and the procedure backtracks to Level 2. Then, 

IIR_Widths leads to the second source variable, x2. 

As a final remark on this example, we would like to mention that the two 2-best 

parallel gradient based rules from the literature (Berner 1996) (Rules B/C) select x2 

and x4 in parallel for re-partitioning this box. This results in a 10% lower reduction in 

the total pending status of all four siblings as compared to the reduction achieved by 

IIR and IIR_Widths.   

4.6. Convergence Proof of IIR  
 
Remarks 4.1 and 4.2 discuss even power, abs and trig operators where IIR cannot 

label an interval bound at level k+1 symbolically if some ambiguous conditions hold 

on sub-expression intervals at relevant levels of the binary tree.  Remark 4.3 indicates 

two exceptional cases for interval multiplication operator. Remark 4.4 shows that IIR 

symbolically identifies the correct pair of candidate bounds resulting in Λk at any tree 

level k as long as the ambiguities indicated in remarks 4.1, 4.2 and 4.3 do not exist in 
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a constraint expression.  

It is noted that a variable can be a source variable for partitioning the parent box’s 

domain only if its width exceeds a tolerance size. We assume throughout the 

following proofs that the given constraint’s calculated interval is finite. 

Remark 4.1. 

Let the operator at any level k of a binary tree be Θ = “^m” (m is even) or Θ = “abs”, 

and let Λk  = kL = 0. Further, let 1kL + < 0. Then, IIR may not be to identify Λk+1.  

The remark is described by providing a counter example showing that IIR cannot 

identify Λk+1 when the operator at level k is even power and Λk = 0.  Suppose at level 

k, we have the interval [0, 16] and Λk = kL =0. The operator at level k is ^2. Since 

“power” is a unary operator, there is a single Left branch to this node at level k+1. 

The Left branch at level k+1 has a sub-expression interval [-4, 2]. It is obvious that 

neither 1kL + nor 1kL +  results in Λk. ■ 

Remark 4.2.  

Let trig denote any trigonometric function. Define maxtrig and mintrig as the 

maximum and the minimum values trig can take during one complete cycle.  Further, 

let the operator at any level k of a binary tree be Θ = “trig”, and  maxtrig ∈[ kL , kL ] 

or mintrig ∈[ kL , kL ]. Then, IIR may not be able to identify Λk+1.  

Similar to remark 4.1, a counter example is provided to describe it. Suppose we have 

Θ = “sin” operator at level k and the interval [ kL , kL ]= [0.5, 1]. The interval of the 

unary Left branch at level k+1 is [ 1kL + , 1kL + ] = [π/6, 2π/3]. Both 1kL + and 1kL +  might 

result in kL  and none result in kL . ■ 
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Remark 4.3. 

Suppose the interval operator at a given level k is “ ' '◊ = × , and, 

1 1 1, ,1 1 1 1 100 , , andk k kk k k k kL R L R L R R L+ + += =+ + + + +>< . Then, IIR might not be 

able to label a bound in the right or left sub-trees at level k+1.  

It is sufficient to show a counter example for IIR’s labeling procedure. Suppose  ‘× ’ 

type of interval operation exists at level k, with Lk+1=[-1,2] and Rk+1= [-2,1]. Then, at 

level k the ×  operator’s interval is [-4, 2].  If the labeled bound is 2 at level k, then 

both 1 1 1 1 2k k k kL R L R+ + + +× = × = and we cannot choose among the two pairs of 

bounds at level k+1 that both provide the labeled bound at level k. ■ 

Remark 4.4 (Illustration of reduction in uncertainty). 

For constraint expressions excluding the ambiguous sub-expressions indicated in 

remark’s 4.1, 4.2 and 4.3, IIR identifies the correct couple of bounds at level k+1 that 

result exactly in Λk at level k.  

This remark is true by monotonicity property of elementary interval operations and 

functions. ■ 

Theorem 4.1 states that unless ambiguous sub-expressions indicated in remark’s 4.1, 

4.2, and 4.3 exist in a constraint expression ic or an objective function f, partitioning a 

source variable identified by IIR in a parent box Y guarantees immediate reduction in 

the labeled bound of ic or f at the root level of the binary tree, and hence, a reduction 

in the degrees of uncertainty (PGi
Y , PHi

Y, or PFY) of at least one immediate child box. 

The proof of Theorem 4.1 relies on inclusion isotonicity and symbolic processing.  

Theorem 4.1. 

Suppose a given constraint gi(x) or hi(x), or an objective function f does not contain 
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the sub-expression types indicated in remarks 4.1, 4.2 and 4.3. Let Y be a parent box 

whose domain is partitioned by at least one source variable identified by IIR and let St 

be its children. Then, PGi
St < PGi

Y , or PHi
St < PHi

Y ,  or PFSt < PFY for at least one 

child St.  

Proof: 

First, we show that there is an immediate guaranteed reduction in the uncertainty 

degrees of three children St, t=1,..,3, assuming that there are two source variables, 

,Y Y
r mx x , identified by IIR in box Y for a given constraint gi(x). We define S1, S2, S3 and 

S4 as four children produced by the parallel bisection of these two source variables. 

We denote intervals of Y
rx  and Y

mx  in box Y as: I [X , X ]
YYY
rrr =  and I [X , X ]

YYY mmm = , 

respectively. Variable domains in a given child are denoted by IS
j , j=1,2,...,n. We 

assume that ,,S Y
j jI I j r m= ∀ ≠ . In Table 4.3, all child domains are listed.  

Let X
Y
r  and X

Y
m  be identified as most contributing source bounds to ( )iG Y . Below, 

we show that 
t

i i
S YPG PG<  for children S1, S2 and S3, and that

4
i i
s YPG PG= . (The proof 

techniques for hi(x) or f(x) are similar, therefore omitted.)  

Sibling IS
r  IS

m  
S1 [X ,X (I ) / 2]Y Y Y

r r rw+  [X ,X (I ) / 2]Y Y Y
m m mw+  

S2 [ X (I ) / 2,X ]
YY Y rr rw+  [X , X (I ) / 2]Y Y Y

m m mw+
 

S3 [X ,X (I ) / 2]Y Y Y
r r rw+  [ X (I ) / 2,X ]

YY Y mm mw+
 

S4 [ X (I ) / 2,X ]
YY Y rr rw+  [ X (I ) / 2,X ]

YY Y mm mw+
 

Table 4.3. Domain Boundaries of Sibling Boxes 
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Case S1:  

Based on child domains defined in Table 4.3, S1 ⊆ Y. Then, by inclusion isotonicity, 

1( ( )) ( ( ))i iw G S w G≤ Y and ( ) ( )1G S G Yii ≤ . Further, since 1X X
S Y

rr ≠  and 1X X
S Y

mm ≠ , 

then, 1( ) ( )i iG S G≠ Y .  

From the above, 1( ) ( )i iG S G< Y  holds as strict inequality which leads to 
1

i
SPG < i

YPG . 

One can show by similar reasoning that 
2

i
SPG < i

YPG and 
3

i
SPG < i

YPG . However, 

4

i
SPG = i

YPG , because 4X X
S Y

rr =  and 4X X
S Y

mm = .  

The above proof is applicable to all bound combinations (four in total) of contributing 

source bounds other than ( X , X
S S

mr ) pair. In each case, three of the children result in 

reduced 
t

i
sPG .  

When only one source variable is partitioned and two children are obtained, then, S1 is 

guaranteed to have reduced 
1

i
sPG . ■ 

We now describe supporting rules that are applied by IIR in case labeling ambiguities 

described in remark 4.1 and 4.2 arise during tree traversal. For the exceptional case 

found in remark 4.3, the choice in the two pairs of bounds is arbitrary.   

Corollary 4.1.  

Let there exist a sub-expression of the type indicated in Remark 4.1 at level k of a 

binary tree with Λk = kL =0 and interval bound at level k+1, 1kL + < 0. The bound 

labeling rule to be applied by IIR at level k+1 is Λk+1 = 1kL + . This rule supports IIR’s 

reduction of INFY or PFY.  
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Proof: 

Under the conditions indicated in remark 4.1, labeling 1kL +  at level k+1, results in 

the selection of the bound pair targeting 1kL +  at level k+2. The binary sub-tree below 

level k is analogous to the full constraint binary tree, and by induction, the principle of 

identifying the correct bound pair in that sub-tree (Remark 4.4) for reducing | 1kL + | is 

valid as proved in Theorem 4.1. Hence, source variable pair selected by IIR (using 

this rule) in forthcoming partitioning iterations target | 1kL + |. Then, | 1kL + | → 0+, that 

eliminates the ambiguity problem at level k, after which Theorem 4.1’s guarantee of 

immediate (or in next iteration) reduction in INFY or PFY 
 holds.  ■ 

Corollary 4.2.  

Let there exists a trig type sub-expression at level k of a binary tree with                 

maxtrig ∈[ kL , kL ] or mintrig ∈[ kL , kL ]. The bound labeling rule to be applied by 

IIR at level k+1 is Λk+1 = max {| 1kL + |, | 1kL + |}. This rule supports IIR’s reduction of 

INFY or PFY.  

 

Proof: 

Similar to the proof of Corollary 4.1, setting Λk+1 = max {| 1kL + |, | 1kL + |} targets at 

finding (in the corresponding sub-tree) the source variables that reduce the part of the 

interval containing the maximum number of repetitive trigonometric cycles. The 

ambiguity at level k is resolved in forthcoming partitioning iterations when [ kL , kL ] 

excludes maxtrig or mintrig. ■ 
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Theorem 4.2. 

The IPA algorithm is convergent both with the IIR and with the IIR_Widths interval 

subdivision selection rules in the sense that the sequence of leading intervals 

converges only to global maximizer points.  

Proof: 

Consider first the case when the IIR rule is applied. Assume that there exists such a 

subsequence {Xi} of the leading boxes that Xi is a subset of Xi-1, and there exists a 

point x’ in the search interval such that f (x’) < f (x*), and x’ is in each Xi. We 

demonstrate that it will imply a contradiction.   

We prove first that during the subdivision in the subsequence {Xi} every such variable 

that appears in the computation tree will be halved. It is so since otherwise when a 

variable that is used during computation would keep the original width while the 

width of others converges to zero. As a consequence, then {Xi} converges to a point 

regarding those variables that appear in the computed expression. This fact provides 

the contradiction, since the selection of the subinterval with the largest upper bound 

on the objective function cannot converge to a point x’ in the search interval such that                  

f (x’) < f (x*), due to the assumed α-convergence.  

For the case of the IIR_Widths subdivision direction selection rule the proof is similar, 

but it is more straightforward that the respective interval subsequence has such 

intervals for which the width converges to zero for all variables used within the 

computation. ■  

It is noted that the leading interval subsequences do not necessarily converge to points 

of the search space. It may happen when there is at least a variable that does not 

contribute to the objective function, i.e., it is not used in the computation tree. In such 
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cases there is a continuum of global maximizer points and the resulting intervals will 

highlight this phenomenon, since such variables will keep their width in the original 

search interval. This is true for both introduced selection rules, and this indicates that 

these are as sophisticated as the rules B and C that also have this feature.  
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Chapter 5 

Computational Results 

5.1. Bound Constrained Optimization (BCOP) 

The numerical experiments are conducted on well-known test problems from the 

literature in order to assess the performance of IIR against k-best (for a fair 

comparison, 2-best) parallel version of established subdivision direction selection 

rules and against the standard 2n multi-section rule. 

Testing environment 

The runs were executed on a PC with 2 GB RAM, 2.4 GHz Intel Xenon CPU, under 

Windows OS system. All codes were developed with Visual C++ 6.0 interfaced with 

the PROFIL interval arithmetic library. 

5.1.1. Comparison Basis 

The performance of IIR is compared with two well established and efficient gradient-

based subdivision direction selection rules (Rules B/C) from the literature (Ratschek 

and Rokne 1995, Csendes et al. 2000). These rules have become standard benchmarks 

because they have been identified as best performing among others after extensive 

testing. For a fair comparison with our multi-section approach, Rules B/C is also 

converted into multi-section rules by applying 2-best subdivision strategy (Berner 

1996), i.e., the first two variables from the list (sorted according to Rules B/C) are 

partitioned. These rules are briefly described below.  
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Rule B (Hansen 1992): 

Rule B chooses variables according to a maximal index consisting of variable interval 

width multiplied by the width of its respective first order derivative, w(Fi′(X)), as 

defined in equation (5.1): 

Select xk: Ck := max
i=1...n

{Ci }, where Ci =w(Xi)w(Fi′(X)). 

 (5.1) 

Rule C (Ratz 1992): 

The first order derivative of each variable is multiplied by the difference between its 

interval and its midpoint, Mi. The variable with the maximum index value defined in 

equation (5.2) is selected by Rule C.  

    Select xk: Ck := max
i=1...n

{ Ci }, where Ci =w(Fi′(X) (Xi - M i)).          (5.2) 

5.1.2. Test Functions 

27 well-known test functions from the literature are selected to compare the 

performance of IIR against Rules B/C multi-section approach. The number of test 

instances becomes 34 as some functions such as Levy, Griewank and Schwefel are 

run with increasing number of dimensions (up to 30). The test functions are provided 

with their references and features in Table 5.1. The complexities and features of these 

test functions are discussed in detail in previous comparisons (Özdamar and 

Demirhan 2000) and they present a balanced portfolio from easy (such as Schwefel 

3.1, Box), through moderate (such as Griewank) to difficult (such as Schwefel 3.7) 

problems with topological properties discussed in many global optimization 

references.  
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Problem (Dim.) Description Reference 

Ackley (4) Multimodal trigonometric function Website MATLAB / 
TEST/Lazauskas 

Brownal (10) Twice differentiable sum of squares. CUTEr 

Box 3D (3) Singular problem with manifold of 
solutions  Schwefel (1981) 

Cos 4 (4) Multimodal trigonometric function Breiman and Cutler (1993) 
Dixon3dq (10) Twice differentiable quadratic function  CUTEr 

Djong’s Function 2 
(8) 

Global optimum inside a long, narrow, 
parabolic shaped flat valley, slow 
convergence in the valley  

De Jong (1975) 

Eg1 (3) Twice differentiable trigonometric 
function CUTEr 

Exp 6 (6) Exponential function  Breiman and Cutler (1993) 
Extended Kearfott 
(4) Polynomial function Kearfott (1979) 

Extrosnb (10) Twice differentiable Sum of Squares. CUTEr 
Genhumps (5) Twice differentiable Sum of Squares. CUTEr 
Griewank  
(5, 10, 20) 

Wide spread regularly distributed 
maxima, trigonometric  

http://iridia.ulb.ac.be/langerm
an/ ICEO.html 

Hartman (6) 4 local minima Törn and Zilinskas (1989) 
Hs045 (5) Twice differentiable geometric function CUTEr 
Levy 14,16,18   
(3, 5,7) 

2700, 105, 108 local minima, 
trigonometric Levy et al. (1981) 

Levy 10,11,12  
(5, 8, 10) 105 , 108 , 1010 local minima, trigonometric Levy et al. (1981) 

Michalewicz (5) 
Multimodal trigonometric function, 
function values around narrow peaks give 
little information  

http://iridia.ulb.ac.be/langerm
an/ ICEO.html 

Powell (4) Singular, Hessian at origin Moré et al. (1981) 

Rastrigin (8) Highly multimodal trigonometric, 
regularly distributed local maxima 

Website MATLAB / 
TEST/Lazauskas  

Rosenbrock (10) Long curved only slightly decreasing 
valley Rosenbrock (1970) 

S271 (6) Twice differentiable quadratic function  Schittkowski (1987). 
S288 (20) Twice differentiable quadratic function  Schittkowski (1987). 
Schwefel 1.2 (4) Continuous unimodal function Schwefel (1981) 
Schwefel 3.1 (3) Unimodal function Schwefel (1981) 
Schwefel 3.7  
(15, 30) Singular Hessian at x* = 0 Schwefel (1981) 

Shekel (4; m=10) Multimodal test function Törn and  Žilinskas (1989) 

Sphere (7) Unimodal http://iridia.ulb.ac.be/largerm
an/ ICEO.html 

 
Table 5.1. Description and references of the bound constrained optimization test 

functions. 
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5.1.3. Computational Results 

Performance is measured in terms of the number of function and gradient calls (as 

indicated by FE and GE, respectively in Table 5.2), the CPU time in seconds, and the 

absolute deviation from the global optimum value. Positive absolute deviations occur 

in cases where methods fail to converge within 300 CPU seconds. The latter test 

instances are indicated at the end of Table 5.2. In IIR, runs FE does not include calls 

at subexpression levels because they are partial expression calls, and the latter are 

assumed as computational overhead. FE indicated for IIR is equal to the number of 

tree traversals. Rules B and C are supported by the monotonicity test since it does not 

require additional gradient calls. Finally, all methods use the cut-off test. 

A run is completed when for all non-discarded pending boxes the difference of the 

function upper bound over the box to the current lower bound is less than 1 x 10-13.  

In the last five rows of Table 5.2, we can observe that Rules B and C were not able to 

converge on four test functions within the CPU time limit imposed, but they are able 

to converge for the 5th one in 0.141 seconds. Similarly, the IIR rule does not converge 

for the first three functions, but it was able to converge in the 4th and 5th functions 

within 6.153 seconds, and 0.282 seconds respectively. However, IIR_Widths do not 

converge for first three test functions and the 5th test function, but it was able to 

converge in 4th one within 6.374 seconds.  The performance of IIR is notable in the 

function S288 where Rules B/C end up very far from the global optimum. 

Considering all 34 test functions, the results obtained by Rules B and C are not 

significantly different. When the first part of Table 5.2 is analyzed, we observe that 

the average number of function calls for IIR is larger than those of Rules B and C 

(including their gradient calls). Despite this fact the average CPU time required for 
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IIR is almost half of those of Rules B and C. That of IIR_Widths is almost one-fourth 

of Rules B/C. The tree traversal overhead in IIR that can be compared with the task of 

calculating the gradient in the other rules. The number of best solutions obtained by 

IIR_Widths compares very well with others. Hence, we can conclude that IIR’s 

symbolic methodology of selecting the maximum impact variables is more efficient 

than that of the function rate of change based rules. 

In Table 5.3, we provide a summary of total CPU times taken by all rules for 

functions with less than five dimensions and for those greater than five dimensions. In 

the first part of Table 5.3, we observe that IIR’s performance is inferior in test 

functions up to five dimensions. In problems with larger dimensions, its performance 

is significantly superior as compared to Rules B and C. When the outlier CPU time 

(Griewank 20D) was removed from this set, we have found the difference in 

performance statistically significant (at a 5% significance level). In Table 5.3, the 

total CPU time needed by all three methods is given for the first 29 test problems 

(split into less than or greater than five dimensions) where all methods converge. This 

outcome is expected because the sequence of variables to be partitioned gains more 

importance in larger dimensional problems. Both Rules B and C are affected by the 

width of variable domains, and this tends to push the selected variable sequence into a 

more balanced manner in terms of box size. However, the size of variable domains 

has a more implicit impact on the choice of variables in IIR. 
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IIR_Bounds IIR_Widths Rule B Rule C Function 
(Dimension) FE CPU FE CPU FE GE CPU FE GE CPU 

Box 3D(3D) 180 0.407 164 0.296 140 141 0.313 140 141 0.312 
Eg1(3D) 414 0.203 292 0.125 12 13 0.016 12 13 0.016 
Levy14(3D) 324 0.142 156 0.095 164 165 0.172 164 165 0.188 
Powell(4D) 1224 0.875 1224 0.859 1000 1004 1.141 1060 1061 1.297 
Ackley(4D)$ 4260 2.950 416 0.312 - - - - - - 
Cos4(4D) 5460 6.771 4664 4.263 276 277 0.391 276 277 0.391 
Extended 
Kearfott(4D) 296 0.125 296 0.156 432 433 0.421 432 433 0.421 

Schwefel 1.2 (4D) 1488 5.500 260 0.125 200 201 0.140 200 201 0.140 
hs045(5D) 320 0.375 512 0.530 20 21 0.015 20 21 0.047 
Griewank(5D) 316 0.359 252 0.234 240 241 0.390 240 241 0.391 
Levy10(5D) 316 0.453 304 0.423 236 237 0.719 236 237 0.874 
Levy16(5D) 416 0.469 340 0.155 268 269 0.594 268 269 0.594 
Genhumps(5D) 10556 11.384 496 0.593 416 417 1.155 416 417 1.155 
Exp6(6D) 624 0.671 572 0.514 28 29 0.062 28 29 0.062 
S271(6D) 932 0.719 524 0.344 520 521 0.781 520 521 0.781 
Sphere(7D) 384 0.281 384 0.281 108 109 0.203 108 109 0.203 
Levy18(7D) 416 0.500 532 0.765 364 365 1.624 364 365 1.624 
Rastrigin(8D) 538 1.187 492 0.765 488 489 2.140 488 489 2.140 
Levy8(8D) 568 1.311 580 1.483 380 381 3.156 380 381 3.156 
Djong’s Function 
s(8D) 488 0.717 488 0.750 484 485 2.219 488 489 2.220 

Rosenbrock(10D) 652 1.410 652 1.389 720 721 6.156 708 709 6.047 
Griewank(10D) 640 2.017 572 1.110 488 489 3.578 484 485 3.484 
Extrosnb(10D) 572 1.141 572 1.145 552 553 4.437 544 545 4.338 
Dixon3dq(10D) 616 1.297 616 1.329 644 655 3.859 588 589 3.687 
Levy12(10D) 672 1.915 564 1.529 472 473 6.422 472 473 6.422 
Brownal(10D) 648 3.393 608 2.184 484 485 5.422 484 485 5.516 
Schwefel3.7(15D) 128 0.172 128 0.203 124 125 1.313 124 125 1.313 
Griewank(20D) 1332 13.590 1120 5.891 960 961 39.482 972 973 39.733
Schwefel3.7(30D) 252 0.812 252 0.830 244 245 17.187 244 245 17.124
Average 1208 2.108 622 0.989 374 375 3.697 455 456 3.703 
Std. dev. 2141 3.283 815 1.266 255 256 7.832 259 259 7.865 
No. of Best Sol. - 8 - 16 - - 6 - - 5 
% of Best Sol.  27.5  55.17   20.68   17.24 
 Problems not Converged within 300 CPU Seconds 

IIR_Bounds IIR_Widths Rule B Rule C Function 
(Dimension) FE Abs. 

Dev. FE Abs. 
Dev. FE GE Abs. 

Dev. FE GE Abs. 
Dev. 

Shekel (4D, 
m=10) 10712 0.008 10656 0.000 17182 17183 0.000 17182 17183 0.000 

Michalewicz (5D) 10112 2.884 14292 0.000 17506 17507 0.000 17274 17275 0.000 
Hartman(6D) 9636 0.163 12144 0.002 9484 9485 0.000 9484 9485 0.000 
S288(20D) 1356 0.000 135 0.000 6196 6197 3000 10576 10577 3000 
Schwefel 3.1(3D) 308 0.000 21072 0.000 220 221 0.000 220 221 0.000 
$ : indicates problem in computing Gradient value 

 
Table 5.2. Comparison of numerical results for bound constrained optimization 

problems. 
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Dimension IIR_Bounds IIR_Widths Rule B Rule C 

n < 5 16.973 6.231 2.594 2.765 
n >= 5 44.173 22.447 100.914 100.911 

Table 5.3. Total CPU times in seconds for small and large size BCOP 

5.2. Continuous Constraint Satisfaction Problems 

The numerical experiments are conducted on well-known test problems from the 

literature in order to assess the performance of different tree management of IIR 

against established subdivision direction selection rules and some established 

software such as ALIAS, QUAD, ICOS, and COCOS. 

Testing environment: 

All our runs are executed on a PC with 256 MB RAM, 1.7 GHz P4 Intel CPU, on 

Windows platform. Our codes are developed with Visual C++ 6.0 interfaced with 

PROFIL interval arithmetic library (Knuppel 1994) and CFSQP (Lawrence et al. 

1997). CPU times for QUAD are reported on a 1.0 GHz PC Notebook whereas ALIAS 

runs are reported for a DELL400 1.7 GHz machine. 

5.2.1. Comparison Basis  

Comparison between IIR and other subdivision direction selection rules:  

We compare the performance of the symbolic subdivision method, IIR, with two 

established subdivision direction selection rules: largest width (commonly known as 

Rule A), and maximum interval rate of change (Smear), a rule mentioned previously.  

All three rules are embedded in the same IP algorithm with adaptive tree 

management, restricted parallelism approach and FSQP. In Rule A and Smear, wj are 

taken as variable interval width or maximum Jacobian interval bound and they are 

divided by the largest width or maximum Jacobian bound. Let us re-emphasize that, 
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in IIR, only variables that are identified by IIR_Tree are considered and assigned 

weights, while in Rule A and Smear, all variables are candidates for partitioning. We 

also carried out experiments using the Round Robin variable selection strategy. 

However, in most cases it could not converge, and we therefore omit it from the 

presentation.  

Comparison between adaptive tree management approach and other strategies: 

The impact of the adaptive tree management approach is measured by running the 

three rules, IIR, Rule A and Smear, with pure depth-first and pure worst-first 

branching strategies that are usually utilized in IP.  

Comparison basis with other interval methods: 

In the presentation of results, we also provide the published results of the following 

symbolic-interval methodologies: ALIAS (Merlet 2000, http://www-

sop.inria.fr/coprin/logiciels/ALIAS/Benches/), QUAD (Lebbah et al. 2003), ICOS 

(Lebbah 2003), and COCOS wherever results are available (Neumaier et al. 2005). As 

mentioned previously, ALIAS is an extensive interval-symbolic software library where 

many of the local and global interval and symbolic filtering methods co-exist with 

special tools for univariate polynomials. COCOS involves an advanced IP algorithm 

with hull consistency and linear programming techniques. QUAD is designed for 

filtering quadratic systems, its first stage involves linearization, and the second stage 

uses simplex algorithm to narrow down the bounds of variables in the resulting linear 

program. The developers show for their two illustrative examples (also included here) 

that QUAD is more efficient than 2B and 3B consistency techniques and compare 

their method with Numerica (Van-Hentenryck et al. 1997). ICOS is reported to be the 

most reliable method for the CCSP among those compared by Neumaier et al. (2005).  
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5.2.2. Test Functions  

The benchmarks: 

Most of the benchmarks originate from the European IST project COCONUT 

(http://www.mat.univie.ac.at/~neum/glopt/coconut/benchmark.html) and the COPRIN 

web page (http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/). Twenty-three 

test problems (some quite challenging to solve) are used in the comparison (including 

seven problems from kinematics-robotics fields, one from chemistry, a reactor 

problem, two economic models and others), three of which are announced as difficult 

problems (Direct Kinematics, Countercurrent Reactors 2, Fredtest) by the COPRIN 

group. Three other difficult problems, Cyclic5, Heart, Neurophysics, come from the 

COCONUT group. ALIAS results are available mostly among the first thirteen 

problems (except for Cyclic5, Chemequ, Kin2 and Stewart-Gough) whereas ICOS and 

COCOS results are available for most of the total set of 23 problems (in 18 problems). 

Two quadratic problems (Kin2 and Stewart-Gough) are solved by QUAD. In Table 

5.4, all test problems are listed with their details (number of dimensions, nonlinear 

and linear equations, linear inequalities) and the software they have been solved with. 

ALIAS usually solves these problems with Gradient_Solve+Hull Consistency+3B or 

Hessain_Solve+3B+StrongHullConsistency method combinations. Gradient_Solve 

and Hessian_Solve algorithms obtain sharper function and Jacobian bounds, 

respectively.  We discuss some of the difficult problems below.  

Direct Kinematics has two close solutions that are hard to isolate. This problem 

determines the pose parameters of a parallel robot platform and involves 8 difficult 

highly non-linear and inter-dependent trigonometric equations with 3 independent  
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Problem D,# NE, #LE, 
#LIE Category # of 

Sol. 
Solved 
by 

Kin2 8,8,0,0 Quadratic 10 QUAD, 
ICOS 

Kin1-Modified 6,6,0,0 Trigonom. 16 ALIAS 

KinCox 4,4,0,0, Quadratic 2 ALIAS, 
ICOS 

Direct Kinematics 11,11,0,0 Trigonom. 2 ALIAS 
Stewart-Gough 9,9,0,0 Quadratic 2 QUAD 

FredTest 6,5,1,2 Polynom. 1 ALIAS, 
ICOS 

Eco9 8,7,1,0 Quadratic 16 ALIAS, 
ICOS 

Redeco8 8,6,2,0 Quadratic 8 ALIAS, 
ICOS 

Puma 8,7,1,0 Quadratic 16 ALIAS, 
ICOS 

Chemequ 5,5,0,0 Polynom. 4 ICOS 
Counter concurrent 
reactors 2 6,6,0,0 Polynom. 2 ALIAS 

Cyclic5 5,5,0,0 Polynom. 1 ICOS 
Dietmaier 12,12,0,0 Quadratic 40 ALIAS 
Heart 8, 6,2,0 Polynom. 2 ICOS 
Neuro 6, 6,0,0 Polynom. 1 ICOS 
Quadfor2 4,3,1,0 Polynom. 1 ICOS 
Wright 5,5,0,0 Quadratic 5 ICOS 
Solotarev 4,4,0,0 Polynom. 6 ICOS 
S9_1 8,4,4,0 Polynom 4 ICOS 
Butcher 7,7,0,0 Polynom 7 ICOS 
Trinks 6,4,2,0 Polynom 2 ICOS 
Lorentz 4,4,0,0 Polynom 3 ICOS 
Remier5 6,5,0,0 Polynom 2 ICOS 

Table 5.4. List of CCSP benchmarks. 

(Note: D: Dimension, NE: Nonlinear Equations, LE: Linear Equations, LIE: Linear 
Inequailities) 

quadratic equations. Other difficult kinematics problems included here and not 

covered by COPRIN group but solved by QUAD are: 6R (Kin2) and Stewart Gough. 

Kin2 is a quadratic problem with 10 real solutions solved by QUAD and also tested by 

COCONUT group. Kin2 describes the inverse position problem for six-revolute-joint, 

and the Stewart Gough involves a manipulator configuration problem. The Stewart 

Gough has 3 totally independent constraints that might make constraint propagation 

based filtering methods (such as 2B and Box) ineffective (as verified by Lebbah et al. 
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2003). Numerica (where Box consistency technique is included) makes more than 

10,000,000 narrowing iterations to solve this problem. Another benchmark is the 

trigonometric Kin1-Modified that describes the inverse kinematics of an elbow 

manipulator. 

Puma represents the inverse kinematics of a 3R robot whereas the KinCox is the 

simple inverse position problem. Kinematics problems specifically require the 

identification of all configurations (feasible solutions) because missing some solutions 

result in uncovered workspace. The benchmark, Fredtest, also takes place in the 

difficult problem category of the COPRIN group. Eco9 and ReDeco8 are quadratic 

economic modeling problems. 

Chemequ is 3rd degree chemical equilibrium of hydrocarbon combustion with high 

constraint dependency. Counterconcurrent Reactors 2 is a 2nd degree sparse and 

partially separable polynomial. Cyclic5 involves constraints that have geometric terms 

with increasing number of variables. This problem is also ladder type in the sense that 

an additional variable is added to the multiplicative terms in each consecutive 

constraint. Hence, all constraints have strong inter-relations. 

Dietmaier benchmark represents the forward kinematics equations of a parallel robot 

and it is quite famous in robotics for its guaranteed 40 real solutions (Dietmaier 

1998). Heart and Neurophysics problems involve complex expressions built by 

multiplicative terms involving higher order polynomials. The remaining problems 

(last eight) have simpler forms. 

5.2.3. Computational Results 

Test results are given in terms of Standard Time Units, STU (Shcherbina et al. 2002) 

taken by each software to identify all solutions (ALIAS/QUAD, IP) or a single solution 
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(COCOS/ICOS). All CPU times reported for ALIAS, QUAD, ICOS, COCOS, and 

proposed IP are converted into STU’s by taking into consideration the processing 

speed of machines reported. 

Results: 

Table 5.5 provides a summary of results obtained by all three subdivision selection 

rules and three branching strategies covering all 23 problems as well as ALIAS (9 

problems), QUAD (2 problems), ICOS (18 problems) and COCOS (18 problems). The 

detailed results for all 23 problems are omitted due to lack of space and difficulty in 

following large tables.   

Before discussing the results in Table 5.5, we would like to mention that none of the 

methods in comparison includes all available symbolic-interval tools. For instance, 

COCOS lacks some numerical and consistency techniques that are available in ALIAS, 

QUAD is very different from other methods, and the Rules in IP use only interval 

evaluation as filtering technique and they do not yet include numerical tools. 

Furthermore, the test bed includes interesting and hard benchmarks, but it is not an 

exhaustive test bed, and all method’s results are not published in the literature for all 

available benchmarks. In order to provide such a full comparison, all codes pertaining 

to the methods mentioned here should be made publicly executable with common data 

structures. Therefore, our tests and comparisons would only be fair among the three 

Rules and IP tree management schemes proposed here. The results of other methods 

should be viewed as informative and they are included for providing some insight on 

the degrees of difficulty of the benchmarks. More detailed results are given in 

Appendix-A. 
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The following information are provided in Table 5.5: the average STU’s taken (all 

methods), the number of tree levels the solutions are found in (only for adaptive 

branching strategy); number of FSQP calls (all Rules); average number of variables 

partitioned in parallel for IP (all Rules), the number of function calls outside FSQP 

(all Rules). We also provide the number of best solutions found (all methods), number 

of problems that could not be solved during the given time limit (all methods) and the 

number of problems where ICOS, COCOS or ALIAS/QUAD results are not available. 

We do not display the number of Jacobian calculations used by Smear rule. We also 

summarize the average percentage of solutions found in each tree level of the adaptive 

IP. In three of the problems (Fredtest, ECO9 and PUMA) simple consistency check 

has been applied to linear constraints. The convergence rate of the rules slows down 

significantly when we apply this check in Redeco8, because the linear equality has too 

many variables and in this case, the reduction in variable domains is not worth the 

consistency check overhead. 

Comparison among the Rules and IP tree management approaches: 

When IIR, Rule A and Smear are compared under adaptive tree management scheme 

IIR is distinctly superior as compared to Rule A and Smear, with respect to average 

STU, number of unsolved problems and best solutions found. On the average, it 

consumes 46.177% less time than Rule A in solving CCSP’s. IIR reduces both the 

number of function calls outside FSQP and the number of FSQP calls significantly.  

Sometimes, despite the fact that the number of FSQP calls or function evaluations is 

higher in IIR, it tends to need lesser or similar STU’s to converge as compared to Rule 

A. The reason is that due to different partitioning sequences, in such problems, FSQP 

takes much longer time in Rule A in its search of feasible solutions in a given box. For 

instance, in Redeco8, the total number of function calls within FSQP is 2,501,033 
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under IIR whereas it is 4,849,203 under Rule A, but IIR takes 0.411 STU’s to 

converge while Rule A takes more than 0.771 STU’s. In general, the difficult 

problems for all rules under adaptive tree management scheme are Redeco8 (except 

for IIR), Chemeq, Cyclic5 (except for IIR), Dietmaier, and Heart. It is interesting to 

note that the Smear rule works well in Dietmaier as compared to other rules, however, 

in this problem, ALIAS produces the best overall result. Similarly, Smear rule under 

depth-first approach is the only method that converges in the Heart within the given 

STU limit. 

In the worst-first branching scheme, Rule A and IIR have similar performance, and 

Smear is still the worst performing rule. In addition to the previously mentioned 

complex problems, in this branching scheme, Kine2, ECO9 and Reimer5 cannot be 

solved within the given time limit. In the depth-first approach, the two rules are still 

similar but Smear becomes the best performing one. In this tree management 

approach, the number of unsolved problems becomes quite large for IIR and Rule A as 

compared with the adaptive and worst-first approaches. When the three branching 

strategies are compared, the adaptive approach is observed to produce the best overall 

results with IIR and Rule A. 

Many of the complex benchmarks have constraints that are formed of long 

expressions involving multiplicative terms. The latter property leads to slower 

convergence and higher tree levels in the adaptive approach. In the adaptive tree 

management scheme, for Direct, Redeco8, Cyclic5, Reactor 2, Reimer5 and 

Solotarev, IIR finds all solutions in lesser number of tree levels whereas in Dietmaier 

and Kin1_modified, it requires more levels. The average percentage of solutions 

found (indicated in Table 5.5) in each level illustrates the differences in the 

performance of the Rules. From this information, we can gather that Rule A and 
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Smear have difficulty in identifying solutions after the second level whereas IIR 

identifies more solutions in Level 1 on the average and it is able to converge in every 

problem except Dietmaier and Heart.  

Although the average scale of variable partitioning parallelism seems to be similar 

among the Rules, we observe that all Rules use different scales when this information 

is viewed on individual problem basis. A larger scale does not imply better 

performance or vice versa, e.g., in S9_1, IIR converges in 0.045 STU’s with average 

parallelism scale of 7.8 whereas Rule A converges in 0.052 STU’s with a parallelism 

scale of 4.28, and Smear cannot converge within 0.771 STU limit with a scale of 5.0. 

Every rule adjusts its own scale of adaptive parallelism that may change from two 

(minimum number of variables to be partitioned in all Rules) to eight. A good 

example of such self-sustained parallelism is Direct Kinematics where both IIR and 

Rule A prefer to maintain a lower parallel profile whereas in Fredtest a high profile 

results in good performance. However, we can generally say that the scale of 

parallelism is higher in more difficult problems. 

Other methods: 

In the comparison between ALIAS/QUAD and ICOS/ COCOS, one should remember 

that in the 9 problems of the first 13 benchmarks that include quite difficult ones, 

ALIAS results are available. For the last 10 problems, the first two of which are 

complex, ALIAS/QUAD results are not available. On the other hand, results for 

ICOS/COCOS do not include STU’s for three difficult kinematics problems, Direct, 

Stewart-Gough, Dietmaier, and also for Reactor 2. We observe that ICOS is quite 

slow in converging and out of 18 problems that it attempts, it is able to converge only 
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in 3 problems before the STU limit is reached whereas COCOS can converge in 10 

problems. 

IP - Adaptive Tree management IP - Worst-First Tree 
management 

 

IIR Rule Rule A Smear IIR Rule Rule A Smear 
Avg. CPU (STU) 0.122 0.226 0.395 0.308 0.308 0.490 
Avg. no. of stages 1.739 2.174 2.217 - - - 
Avg. no. of SQP calls 858.217 3093.09 3772.17 356.913 369.522 595.739 
Avg. no. of function calls 16356.09 34020.48 52959.26 4535.22 4417.13 6662.04 
No. of unsolved problems 2 5 11 8 8 13 
% of unsolved problems 8.69 21.7 47.83 34.78 34.78 56.52 
No. of best solutions found 9 4 2 1 4 2 
% of best solutions found 39.13 17.39 8.69 4.34 17.39 8.69 
Data not available 0 0 0 0 0 0 

Avg. percentage of Solutions found 
Stage 1 72.50 64.55 56.81 - - - 
Stage 2 17.39 10.27 11.49 - - - 
Stage 3 5.07 1.63 0.50 - - - 
Stage 4 1.63 0.00 0.50 - - - 
Stage 5 - 0.00 - - - - 
Total 96.59 76.45 69.3 84.40 80.65 72.77 

IP - Depth-First Tree 
management ALIAS  

IIR Rule Rule A Smear QUAD 
ICOS COCOS 

Avg. CPU (STU) 0.506 0.509 0.345 0.234 0.667 0.448 
Avg. no.of stages       
Avg. no. of SQP calls 7412.17 9254.43 2538.35 - - - 
Avg. no. of function calls 603921.3 755506.3 30379.74 - - - 
No. of unsolved problems 12 15 8 2 7 - 
% of unsolved problems 52.17 65.21 34.72 18.18* 36.84*  
No. of best solutions found 2 1 3 4 0  
% of best solutions found 8.69 4.34 13.04 36.36* 0*  
Data not available 0 0 0 12 14 - 

Avg. percentage of Solutions found 
Stage 1 - - - - - - 
Stage 2 - - - - - - 
Stage 3 - - - - - - 
Stage 4 - - - - - - 
Stage 5 - - - - - - 
Total 63.78 56.87 83.88    

 
Table 5.5. Summary of results for CCSP benchmarks 

* Percentage is calculated using the actual number of problems (Actual number of problems = 
total no. of problems – no. of problems for which data is not available) 
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 ICOS converges in Wright, Kincox and PUMA that are relatively simple as compared 

to others. Meanwhile, ALIAS is able to converge fastest among all methods in Kincox, 

ECO9, Redeco8, PUMA and Dietmaier, some of which are hard benchmarks. This is 

quite an achievement because ALIAS results are for finding all solutions rather than 

one. Yet, when we look at the average STU’s, we should remember that ALIAS results 

are not available for three time consuming problems, Cyclic5, Chemeq, and Heart 

whereas COCOS and ICOS results are available for these problems.  

Some detailed observations.  

It is interesting to see that problems that are difficult for filtering oriented ALIAS-

QUAD methods (Fredtest, Direct, Kin1-Modified) are easier to solve for IIR and Rule 

A whereas Redeco8 and Dietmaier are serious obstacles for the Rules. Redeco8 is also 

a problem for ICOS/COCOS. In Redeco8, only IIR is able to identify all solutions 

among the Rules, but it takes longer time than ALIAS. In Kin2 that has appropriate 

constraint structure for filtering methods, IIR and Smear results are compatible with 

that of QUAD. ICOS does not converge and COCOS produces the best overall result, 

which is remarkably superior to others. In trigonometric CCSP’s, Kin1-Modified and 

Direct Kinematics, filtering techniques in ALIAS seem to be much less effective as 

compared to the Rules. In the Stewart Gough, the linear filtering technique in QUAD 

performs worse than the Rules, possibly due to the overhead of Simplex method. In 

Fredtest, ALIAS and ICOS cannot converge whereas the Rules have STU’s at 1/1000 

level in almost all branching schemes. COCOS converges in this problem but it is 

somewhat slower than the Rules. Cyclic5 can be solved by IIR under adaptive 

branching scheme but not by other Rules or tree management approaches. It can 

however be solved by COCOS though nearly using total allowed time. ECO9 and 

Redeco8 are problems where filtering techniques are very successful. They both have 
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ladder type of nonlinear equation structures where constraint propagation is expected 

to be effective. Chemeq is successfully solved by Smear (under all branching 

schemes) and IIR (under adaptive branching approach), though the latter is much 

slower. In Reactor 2, Rule A and IIR are compatible with and better than (in worst-

first and depth-first approaches) ALIAS in terms of STU’s.  

In the last ten problems where all method results are available except for 

ALIAS/QUAD, it is observed that except for the Heart, in most problems (Butcher, 

Lorentz, Quadfor2, Trinks and Wright) all Rules under adaptive and worst-first tree 

management strategies perform better than ICOS/COCOS. In the more difficult 

benchmarks such as reimer5 and S9_1, IIR and Rule A outperform COCOS only with 

the adaptive tree management approach but not with the other two. More detailed 

results are illustrated in Appendix A.  

Final comments: 

As final comments on these numerical results, we would like to add that these tests 

are only preliminary and the target is to show that basic IP that is enhanced by IIR and 

adaptive tree management that invokes FSQP is a viable and superior approach that 

can be adopted in CCSP’s. Without FSQP (or any other local solver), IP would have 

no chance to converge. Testing performance of IP- IIR with other local solvers or 

interval Newton constitutes another line of investigation. Integrating advanced 

consistency techniques within the latter method combination is also a topic of future 

research. 

The novel subdivision direction selection rule, IIR, outperforms Rule A and Smear in 

the adaptive tree management approach that produces the best overall results when 

compared with worst-first and depth-first strategies. COPRIN group explains that the 
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tree management system in ALIAS swaps adaptively from worst-first/best-first to 

depth first according to memory usage of the program. In other methods, such as 

interval Newton, basic best-first strategy is used for tree management. 

Finally, we know from the manual of ALIAS, that parallel variable bisection can be 

carried out, though the user has to fix the number of variables to a priori number. 

Similar parallel bisection methods are also available in bound constrained 

optimization literature. It would be interesting to run such codes with our simple 

parallelization scheme. In preliminary experimentation that is not displayed here for 

lack of space, we found that convergence is slow when the degree of parallelism is 

fixed to a certain a priori number. 

5.3. Constrained Optimization 
 
The numerical experiments are conducted on well-known test problems from the 

literature in order to assess the performance of different tree management of IIR 

against established subdivision direction selection rules and some established 

commercial software such as FSQP, Baron, Minos, Conopt, LGO and Snopt. 

Testing environment: 

All runs are executed on a PC with 256 MB RAM, 1.7 GHz P4 Intel CPU, on 

Windows platform.  The IP code is developed with Visual C++ 6.0 interfaced with 

PROFIL interval arithmetic library (Knuppel 1994) and FSQP. 

5.3.1. Comparison Basis 

The IP results are compared with five different solvers that are linked to the 

commercial software GAMS (www.gams.com) and with FSQP (Zhou and Tits 1996, 

Lawrence et al. 1997) whose code has been provided by AEM 
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(www.aemdesign.com/FSQPmany obj.htm). The solvers used in this comparison are 

Baron 7.0 (Sahinidis 2003), Conopt 3.0 (Drud 1996), LGO 1.0 (Pinter 1997), Minos 

5.5 (Murtagh and Saunders 1987), Snopt 5.3.4 (Gill et al. 1997) and FSQP. Every 

solver is allowed to complete its run without imposing additional stopping criteria 

except the maximum CPU time. 

In order to illustrate the individual impacts of IP’s features (the box selection 

criterion, the adaptive tree search scheme and the branching rule IIR), we include the 

following IP variants in the comparison. 

i) IP with Widest Variable Rule (Rule A, Csendes and Ratz 1996, 1997); IP with 

Smear Rule (variable with the largest rate of change*w(xi) by Kearfott and 

Manuel 1990); and IP with IIR; 

ii) IP with depth-first tree search approach; IP with best-first tree search approach 

where box ranking is the same as that of adaptive tree approach; and IP with 

adaptive tree management approach; 

iii) IP with box ranking according to maximum objective bound augmented with 

penalty, ( )F Y -INFY
2 (Yenjay 2005); 

iv) IP with max INFY /max ( )F Y  swapping box ranking approach (as described 

earlier). 

The first set of IP variants listed above enable us to measure the impact of the 

branching rule, IIR against rules established in the interval literature. The second set 

of variants enable the comparison of the proposed adaptive tree search management 

approach against classical tree management approaches. The third and fourth variants 

enable the comparison of the max INFY /max ( )F Y  swapping box ranking criterion 
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against the static penalty approach. All three branching rules are run both with 

augmented ( )F Y  box selection approach and the proposed swapping criterion 

approach as well as all three tree search management schemes. Since the depth-first 

tree management approach does not need a box ranking criterion, we have a total 

number of 15 IP runs for each test problem. 

The performance of each IP variant is measured on all benchmarks with the following 

performance criteria:  the average absolute deviation from the global optimum over all 

55 and 5 benchmarks, the average CPU time in STU’s, the average number of tree 

stages where IP stops, the average number of times FSQP is invoked, the average 

number of function calls invoked outside FSQP, the number of optimal solutions 

obtained and the number of problems where a feasible solution could not be obtained. 

We provide two summaries of results: one for 55 problems and one for 5 

trigonometric problems, the reason being that Baron is not enabled to solve 

trigonometric models (http://www.gams.com/dd/docs/solvers/baron.pdf). 

5.3.2. Test Functions 

Numerical experiments have been conducted on a set of 60 COP benchmarks, five of 

them involving trigonometric functions. Most of these test problems are extracted 

from the COCONUT benchmark library (http://www.mat.univie.ac.at/~neum/glopt/ 

coconut/benchmark.html) and Princetonlib (http://www.gamsworld.org/performance/ 

princetonlib/princetonlib.htm). These problems are listed in Table 5.6 with the 

number of dimensions, number of linear and nonlinear inequalities and equalities. 

While executing IP, we allow at most 2000*(number of variables + number of 

constraints) function calls carried out outside FSQP calls. The maximum iteration 

number allowed for FSQP is limited to 100. We also restrict IP’s run time by 2.827 
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(i.e., 900 seconds) Standard Time Units (STU defined by Scherbina et al. 2002). One 

STU is equivalent to 318.369 seconds on our machine.  

Problem 
D, # NE, # 
LE, # NIE, 

#LIE 
Reference Problem 

D, # NE, # 
LE, # NIE, 

#LIE 
Reference 

Aircraftb 18, 5, 5, 0, 0 Coconut Hs053 5, 0, 3, 0, 0 Coconut 
Avgasb 8, 0, 0, 10, 0 Princetonlib Hs056 7, 4, 0, 0, 0 Coconut 
Alkyl 14, 6, 1, 0, 0 Coconut Hs407 5, 3, 0, 0, 0 Coconut 
Bt4 3, 1, 1, 0, 0 Coconut Hs108 9, 0, 0, 12, 0 Coconut 
Bt8 5, 2, 0, 0, 0 Coconut Hs080 5, 3, 0, 0, 0 Coconut 
Bt12 5, 3, 0, 0, 0 Coconut Hs043 4, 0, 0, 3, 0 Coconut 
Bt11 5, 2, 1, 0, 0 Coconut Hs116 13, 0, 0, 10, 5 Coconut 
Bt7 5, 3, 0, 0, 0 Coconut Himmel11 9, 3, 0, 0, 1 Coconut 
Dispatch 4, 1, 0, 0, 1 Coconut Immum 21, 0, 7, 0, 0 Coconut 
Dipigri 7, 0, 0, 4, 0 Coconut Lootsma 3, 0, 0, 2, 0 Coconut 
Degenlpa 20, 0, 14, 0, 0 Coconut Lewispol 6, 6, 3, 0, 0 Coconut 
Degenlpb 20, 0, 15, 0, 0 Coconut Mwright 5, 3, 0, 0, 0 Coconut 
Eigminc 22, 22, 0, 0, 0 Coconut Mhw4d 5, 3, 0, 0, 0 Coconut 
Ex5_2_4 7, 0, 1, 3, 2 Coconut Madsen 3, 0, 0, 6, 0 Coconut 
Ex9_1_4 10, 4, 5, 0, 0 Coconut Minmaxrb 3, 0, 0, 2, 2 Coconut 

Ex8_4_2 24, 10, 0, 0, 0 Coconut Median_sc
op_vareps 5, 0, 0, 3, 0 Coconut 

Ex9_2_5 7, 3, 4, 0, 0, 0 Coconut Matrix2 6, 0, 0, 2, 0 Coconut 
Ex14_1_5 6, 0, 4, 2, 0 Coconut Mistake 9, 0, 0, 12, 0 Coconut 
Ex9_2_6 16, 6, 6, 0, 0 Coconut O32 5, 0, 0, 6, 0 Coconut 
Ex9_2_7 10, 4, 5, 0, 0 Coconut Pgon 12, 0, 0, 15, 5 Coconut 
Ex9_1_2 10, 4, 5, 0, 0 Coconut Robot 14, 2, 0, 0, 0 Coconut 
Ex2_1_9 10, 0, 1, 0, 0 Coconut Rk23 17, 7, 4, 0, 0 Coconut 
Ex2_1_3 13, 0, 0, 0, 9 Coconut S381 13, 0, 1, 0, 3 Princetonlib 
Ex8_4_1 22, 10, 0, 0, 0 Coconut S355 8, 5, 0, 0, 0 Princetonlib 
Ex8_4_5 15, 11, 0, 0, 0 Coconut S336 3, 1, 1, 0, 0 Princetonlib 

F_e 7, 0, 0, 3, 4 Epperly 
(1995) S262 4, 0, 1, 0, 3 Princetonlib 

Fermat_s
cop_vare
ps 

5, 0, 0, 3, 0 Princetonlib S203 5, 3, 0, 0, 0 Princetonlib 

Fp_2_1 6, 0, 0, 1, 1 Epperly 
(1995) 

Springs_no
nconvex 32, 0, 0, 10, 0 Princetonlib 

Genhs28 10, 0, 8, 0, 0 Coconut Steifold 4, 3, 0, 0, 0 Balogh and 
Toth (2005) 

Hs087 11, 4, 2, 0, 0 Coconut Sample 4, 0, 0, 2, 0 Princetonlib 
Hs108 9, 0, 0, 12, 0 Coconut 
Hs080 5, 3, 0, 0, 0 Coconut 

Table 5.6. List of COP benchmarks used in experiments 

 (Note: D: Dimension, NE: Nonlinear Equations, LE: Linear Equations, NIE: Nonlinear 
Inequality Equations, LIE: Linear Inequalities) 
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5.3.3. Computational Results 

The numerical results are provided in Tables 5.7 and 5.8 for non-trigonometric and 

trigonometric problems, respectively. When we compare the three tree management 

schemes for IP in Table 5.7, we observe that the overall best deviations from the 

optimum are obtained by IIR_adaptive tree management scheme under the box 

ranking rule that does not involve augmented objective function bounds (non-

penalty). This observation is confirmed by the fact that all three rules under this 

configuration have the lowest number of problems where IP does not converge to a 

feasible solution. The performance of widest variable rule (Rule A) is close to that of 

IIR under both adaptive and best-first tree management schemes. Rule A performs 

best only under best-first/non-penalty box ranking configuration. In other 

configurations Rule A is inferior to IIR. Smear is usually the worst performing rule 

under all configurations except for the depth-first approach where it is close to IIR. 

IIR is the best performing rule in all configurations except for best-first/non-penalty 

box ranking configuration. 

An advantage of the adaptive tree management scheme is that it minimizes CPU times 

due to relieved memory requirements and reduced computation times due to less box 

sorting operations. Further, it is effective in sending the correct boxes (boxes that 

contain feasible solutions) to FSQP that converges to feasible solutions in a lesser 

number or iterations as compared to other tree management schemes. As expected, the 

best-first approach is the slowest one among all three tree management schemes (due 

to maintaining lengthy sorted box lists) and the fastest one is the depth-first. However, 

the fastest approach is significantly inferior in solution quality when using Rule A and 

IIR. In this approach, the performance of Smear and IIR are not significantly different 

and that of Rule A is quite inferior. 
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A final observation is that the non-penalty box ranking method is generally better than 

the penalty one in both best-first and adaptive tree management approaches with 

respect to the sum of all three partitioning rules’ average deviation from the global 

optimum. 

When we compare solvers other than the IP, we observe that the two complete solvers 

Baron and LGO are best performing. The performance of Baron is better than the best 

IP configuration (IIR_adaptive_non-penalty) both in terms of average deviation from 

the optimum and CPU time. However, this difference is not statistically significant. 

LGO’s performance is quite inferior to Baron’s and the third best non-IP solver, 

stand-alone FSQP, is much worse than LGO. The difference in performance between 

FSQP and best IP configuration that uses FSQP as a local solver illustrates the 

strength of IP as a complete solver. 

In Table 5.8, for trigonometric problems, we observe that the relative performance of 

different IP configurations is quite similar to our findings in Table 5.7. It is noted that 

the zero deviation of Smear is due to its incapability of solving one problem whereas 

the other two rules converge in this problem. Solvers other than IP are significantly 

inferior as compared to all IP configurations. 
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Table 5.7. Summary of results for non-trigonometric COP. 
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Table 5.8. Summary of results for trigonometric COP. 

5.4. Summary of results 

Table 5.9 illustrates the performance of the best strategies recommended for solving 

BCOP, CCSP and COP problems. It also illustrates the maximum size of the 

problems tested here. 

In the case of BCOP, we observe that IIR_Widths method is the best IIR configuration 

and its performance is superior when compared to the best of other rules i.e., Rule B. 

Moreover, the average CPU time required for IIR_Widths is almost of one-fourth of 
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Rule B’s. Similarly, in the CCSP, we observe that IIR_adaptive tree management. 

method is the best IIR configuration versus ALIAS/QUAD. The average CPU time 

required for IIR_adaptive tree management is almost half of ALIAS / QUAD. 

Problem 
Class  Recommended 

Strategy 
Performance 

measure 
Performance 

value 

Maximum 
problem 

dimension 
Best of IIR 
configuration IIR_Widths CPU time 0.989 30 

BCOP Best of other 
rules Rule B CPU time 3.697 30 

Best of IIR 
configuration 

IIR_adaptive tree 
management CPU time 0.122 11 

CCSP Best of other 
methods 
/solvers 

ALIAS / QUAD CPU time 0.234 12 

Best of IIR 
configuration 

IIR_adaptive_non-
penalty 

Avg. dev. 
from 

optimality 
0.55 32 COP 

(Non-
Trig. 
Func.) 

Best of other 
methods / 
solvers 

Baron 
Avg. dev. 

from 
optimality 

0.434 32 

Best of IIR 
configuration 

IIR_adaptive_non-
penalty 

Avg. dev. 
from 

optimality 
0.015 14 COP 

(Trig. 
Func.) Best of other 

methods / 
solvers 

Snopt 
Avg. dev. 

from 
optimality 

38.082 14 

Table 5.9 Summary of computational results  

For the COP (non-trigonometric functions), we observe that IIR_adaptive_non-

penalty is the best IIR configuration but this time its performance is inferior when 

compared to the best performer of other solvers i.e., Baron. The average deviation 

from the optimal solution for Baron is close to that of IIR_adaptive tree management 

with non-penalty box ranking. However, the difference in performance is not 

statistically significant at a 5% significance level. For trigonometric COP problems, 

we observe that IIR_adaptive_non-penalty method is significantly superior over the 

best of other solvers i.e., Snopt. These results show that the overall performance of IIR 
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in global optimization problems satisfactory in terms of the performance criteria 

stated here.  
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Chapter 6 

Applications 

6.1. Applications − Continuous Constraint Satisfaction Problem 

The Continuous Constraint Satisfaction Problem (CCSP) is a core topic in many real-

world engineering applications including kinematic analysis. Kinematics is 

fundamental in the design and control of robot manipulators (used in contact analysis, 

assembly planning, position analysis, path planning) since performance is achieved 

through the movement of links/legs whose geometry is crucial. Geometric kinematics 

calculates the state of a robot from measurements (direct kinematics) or poses (inverse 

kinematics), and answers associated questions of accuracy and singularities. These 

problems require the identification of all object positions and orientations that satisfy 

a coupled nonlinear system of equations (Tsai and Morgan 1985, Dietmaier 1998). 

Testing environment 

All the IPA runs are executed on a PC with 256 MB RAM, 1.7 GHz P4 Intel CPU, on 

Windows platform. All codes are developed with Visual C++ 6.0 interfaced with 

PROFIL interval arithmetic library (Knuppel 1994) and CFSQP (Lawrence et al. 

1997).  

6.1.1. Description of the Problem 

A brief introduction of the inverse position problem is provided for a 6-Revolute-joint 

problem in mechanics. It is also referred to as test problem Kin2 and is illustrated in 

Figure 6.1.  
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A 6R manipulator has six moving links, numbered sequentially from 2, 3, 4, 5 and 6, 

as shown in Figure 6.1. Link 1 is designated as the base (fixed to ground) and link 6 

as the hand or the manipulator. Every two neighboring links are connected by a joint 

that is associated with a joint axis Zi, i = 1 to 6. Let Zi, and Zi+1 be two adjacent joint 

axes and HiOi+1 be the directed common normal between Zi, and Zi+1. Hi is the 

intersection of HiOi+1 and Zi, and Oi+1 is the intersection of HiOi+1 and Zi+1.  Then one 

can define the following link parameters shown in Figure 6.2.  

 

Figure 6.1. A general 6-R Manipulator 

 

ai = the offset distance from the common normal HiOi+1. 

αi = the angle to rotate the axis Zi about the common normal HiOi+1 so that Zi is 

parallel to Zi+1. The sign of rotation is given by the right hand screw rule with the 

screw taken along the normal HiOi+1. 

di = the distance between the two normals Hi-1Oi and HiOi+1 measured from Zi.  The 

sign of di is positive if OiHi points to the positive Zi direction. Otherwise, di is 

negative. 

Source: Tsai and Morgan (1985)  
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θi = the angle to rotate extended line of Hi-1Oi  about Zi so that the extended line Hi-1Oi  

is parallel to HiOi+1. The sign of rotation is given by the right hand screw with the 

screw pointing along the positive Zi –axis. 

If the ith joint is revolute, then ai, di, and αi are constant while θi is variable. If the ith 

joint is prismatic, then ai, αi, and θi are constant while di is a variable. 

A coordinate system (Xi, Yi, Zi) is attached to each link of the manipulator as shown in 

Figure 6.2. In each coordinate system, the Zi – axis is defined to align with the ith joint 

axis, the Xi-axis is the one along the extended line of Hi-1Oi; and the Yi- axis is defined 

according to the right-hand screw rule. The first coordinate system is fixed to ground. 

Since the common normal H0O1 does not exist, the X1-axis is chosen perpendicular to 

Z1, in an arbitrary manner. Also, a seventh coordinate system is attached to the free-

end to specify the position of the hand. Z7-axis lies in the direction from which the 

hand would approach an object as shown in Figure 6.1. X7-axis is defined by the 

common normal between Z6 and Z7 axes, and Y7-axis is defined according to the 

right-hand screw rule. 

 

Figure 6.2. The basic notation of 6-R Manipulator 

The equations representing the 6R problem are derived by first defining the 

coordinates of a point P in the ith and (i+1)st coordinate systems as (pxi, pyi, pzi) and 

Source: Tsai and Morgan (1985)  
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(pxi+1, pyi+1, pzi+1), respectively. These two vectors are related to the hand position and 

orientation vectors by equations of the form: pi  = Ai pi+1,where Ai is a matrix whose 

elements are ci=cosθi, si=sinθi, λI= cosαi, and µi = sinαi. The inverse transformation is 

written as: 1
1 i ii

−=+p A p . By applying matrix transformation to each pair of coordinate 

systems between two successive links and proceeding from link 7 to link 1, the 

following equation is obtained: p1 = A1 A2 A3 A4 A5 A6 p7. Since an equivalent 

transformation matrix defines the relationship between the coordinates of any point in 

the seventh system p7, and that of the same point expressed in the first system, p1, the 

matrix Aeq = A1 A2 A3 A4 A5 A6 is known when the position and orientation of the hand 

is specified. Let ρ (ρx, ρy, ρz) be the position vector from the origin of the first system 

to the origin of the seventh system as shown in Figure 6.1; and l (lx, ly, lz), m (mx, my, 

mz) and n (nx, ny, nz) be three mutually perpendicular unit vectors aligned with X7, Y7, 

and Z7 axes, respectively. Further, when ρ, l, m and n are given in the first system, the 

equivalent A matrix consists of elements ρ, l, m and n. 

By applying coordinate transformation and variable elimination, one can arrive at a 

system of eight nonlinear equations with eight unknowns expressed in the system of 

equations given below (Tsai and Morgan 1985) where 1≤ i ≤ 4.  

x2
i+ x2

i+1 – 1= 0 

a1i x1 x3 + a2i x1 x4+ a3i x2 x3 + a4i x2 x4 + a5i x5 x7  

+ a6i x5 x8+ a7i x6 x7 + a8i x6 x8 + a9i x1 + a10i x2 

+ a11i x3 + a12i x4 + a13i x5 + a14i x6+ a15i x7  

+ a16i x8 + a17i x8 = 0 

-1 ≤ xi ≤  1 

(6.1) 
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The variables xi and xi+1 represent the cosine (c) and sine (s) of the angle of the ith 

revolute joint to rotate (extended line of Hi-1Oi  about Zi so that the extended line Hi-

1Oi  is parallel to HiOi+1) as illustrated in Figure 6.2.  The variables x1, x2, x3, x4, x5, x6,, 

x7 and x8 actually represent the c1, s1, c2, s2, c4, s4, c5 and, s5 respectively. In equation 

(6.1), the coefficients aki are defined as the manipulator parameters. The details are 

available in Morgan (1987).  

6.1.2. Overview of Solution Methods for Kinematics Problems 

Three major categories of solution methods have been proposed in kinematics 

applications (Nielsen and Roth 1997). These are symbolic methods (Elimination, 

Gröbner basis), approximate numerical methods (continuation method for 

polynomials) and interval-based techniques. Elimination methods use variable 

elimination in order to reduce the initial system to a univariate polynomial. The roots 

of this polynomial are substituted into other equations yielding all solutions of the 

original system. Elimination method was applied in the 6R inverse kinematics 

problem (Manocha and Canny 1994) and direct kinematics of Stewart Gough 

platform (Husty 1996, Innocenti 2001, Lee and Shim 2001). The elimination method 

requires taking the inverse of a large size coefficient matrix that may lead to 

numerical instability. The second symbolic method utilized in parallel manipulators 

(Faugere and Lazard 1995) is the use of the Grobner basis where solutions are 

searched in another triangular system of equations. A general risk of using symbolic 

methods is that there might be an explosion in complexity and extraneous roots may 

be introduced.  

Continuation methods (Allgower and Georg 1980) begin with an initial system whose 

solutions are known, and then transform it gradually to the original system whose 

solutions are sought, while tracking all solution paths along the way.  Researchers 
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have worked on the improvement of continuation methods and dealt with parametric 

difficulties related to the adjustment of continuation weights (Wampler et al. 1990, 

Wampler and Morgan 1991, Recio and Gonzalex-Lopez 1994). An interval approach 

for achieving reliability in continuation is given by Kearfott and Xing (1994). Some 

applications of the continuation method are related to inverse 6R manipulator 

kinematics, direct kinematics of the Stewart-Gough platform and nine-point path 

synthesis problems for four-bar linkages (Tsai and Morgan 1985, Wampler and 

Morgan 1991, Nielsen and Roth 1997). A discussion on the progress of continuation 

methods is given by Sommese et al. (2002). 

Interval-based methods (Neumaier 1990, Hansen 1992) are complete and numerically 

stable algorithms where equations can be entered in their original form without the 

need of intuition-guided symbolic reductions. Two main classes of interval-based 

methods have been applied in the robotics field: Interval Newton (Rao et al. 1998, 

Didrit et al. 1998, Merlet 2001) and Box Consistency techniques (Van-Hentenryck et 

al. 1997a, Van-Hentenryck et al. 1997b, Merlet 2004). Both methods are used within 

the basic Interval Partitioning Algorithm (IP).   

Interval methods can verify reliably that there is no solution in a given sub-set either 

by interval evaluation of the search space, by an interval Newton method (Hansen 

1992) or by local consistency methods (Benhamou et al. 1994). Interval evaluation is 

the simplest way to declare that a box does not have feasible roots, since it calculates 

a constraint interval in a given box. Otherwise, if the interval does not contain a 

function root (the zero), it discards the box. Convergence of this method can be slow 

due to the overestimation of inclusion function ranges that lead to repetitive bisection 

of boxes until it is reduced significantly such that the box is discarded. On the other 

hand, the Interval Newton method has quadratic convergence in finding a single root, 
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and it is based on narrowing variable intervals in a box using the iterative Newton 

step that stems from an equation derived from the mean value theorem. If the box has 

a unique root, Interval Newton method converges to enclose it in a sufficiently small 

box. This method also detects that the box is infeasible by observing that the resultant 

variable domain does not intersect with that of the box. The computational burden of 

this step involves the calculation of the Jacobian and the Gauss-Seidel implementation 

that is used to solve the resulting set of linear equations. Researchers have applied 

Interval Newton method to solve problems such as 6R inverse kinematics, direct 

kinematics of Stewart Gough platform, general single-loop inverse kinematics and 

singularity analysis and mechanism design of parallel manipulators (Castellet 1998, 

Didrit et al. 1998, Merlet 2001). 

The second interval approach used in kinematics is the local consistency method that 

is based on narrowing down variable domains by constraint propagation. There are 

two types of consistency methods: hull and box consistencies. Hull consistency 

(Benhamou et al. 1994) is basically constraint inversion that uses relational interval 

arithmetic. It is applicable to more simple constraints due to the dependency problem 

that takes place in the case of multiple occurrences of the same variable in a constraint 

expression. The dependency problem is partially eliminated by the box consistency 

technique (Benhamou et al. 1994, Van-Hentenryck et al. 1997a) that checks the 

consistency of gradually expanding sub-domains near box boundaries using interval 

evaluation. In both consistency techniques, reduced variable domains are fed into 

each constraint and the procedure is repeated resulting in cyclic constraint 

propagation. If a variable domain is not reduced substantially, it is bisected to result in 

two new sibling boxes that are inserted into the list of pending boxes waiting to be 

assessed. Hull and box consistency methods may work in conjunction with each other 
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and with interval Newton method to gain efficiency. Box consistency 

implementations in kinematics are found in 6R inverse kinematics (Van-Hentenryck 

et al. 1997a, Van-Hentenryck et al. 1997b), and Gough type parallel manipulator 

problem (Merlet 2004), where a comprehensive algorithm that includes 2B and 3B 

box consistency, linearization, interval Newton, and unicity operators are used. This 

algorithm uses an available ALIAS library which is an advanced tool containing 

symbolic, interval, and numerical techniques that deal with root finding in nonlinear 

systems of equations and inequalities (Merlet 2000). 

6.1.3. Numerical Results 

Seven challenging kinematics-robotics problems are used in the comparison, one of 

which is considered as difficult problem (Direct Kinematics) by the COPRIN group 

(COPRIN). Here, some of their features are discussed. Direct Kinematics has two 

close solutions that are hard to isolate. This problem determines the pose parameters 

of a parallel robot platform and involves eight difficult highly non-linear and inter-

dependent trigonometric equations with three independent quadratic equations. Other 

difficult kinematics problems included here and not covered by COPRIN group but 

solved by QUAD are 6R (Kin2) and Stewart Gough. Kin2 is a quadratic problem with 

10 real solutions and it describes the inverse position problem for six-revolute-joint. 

The Stewart Gough involves a manipulator configuration problem that has three 

totally independent constraints that might make constraint propagation based filtering 

methods such as 2B ineffective (as verified by Lebbah et al. (2003)). Numerica 

(where Box consistency technique is included) makes more than 10,000,000 

narrowing iterations to solve this problem. Another benchmark is the trigonometric 

Kin1-Modified that describes the inverse kinematics of an elbow manipulator. Puma 

represents the inverse kinematics of a 3R robot whereas the KinCox is the simple 
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inverse position problem. Finally, Dietmaier (Dietmaier 1998) is direct kinematics of 

a general Gough platform with 40 real solutions. In Table 6.1, all test problems are 

listed with their details (number of dimensions, nonlinear and linear equations) and 

their source references.  

Tables 6.2 and 6.3 illustrate the detailed comparison of results and summary of results 

obtained with IIR, Rule A, Smear under three tree management approaches and CPU 

times reported for ALIAS/QUAD respectively.  

CPU times are indicated in terms of STU’s (Scherbina et al. 2002). One STU is 

equivalent to 388.438 seconds on our machine. All Rules are limited to run for at most 

0.771 STU’s. When a method cannot find all real solutions within this limit, then it is 

simply indicated as 0.771 in the corresponding CPU time row.  The original STU 

reported by ALIAS, QUAD and ICOS is overwritten.  

Table 6.3 provides the average STU’s taken (all methods), the number of tree stages 

the solutions are found in (only for adaptive branching strategy); number of FSQP 

calls; average number of variables partitioned in parallel for IPA, the number of 

function calls outside FSQP. It also provide the number of best solutions found (all 

methods), number of problems that could not be solved during the given time limit 

(all methods) and the number of problems where ICOS or ALIAS/QUAD results is not 

available. The number of Jacobian calculations used by Smear rule is displayed in the 

table. It also illustrates the average percentage of solutions found in each tree level of 

the adaptive IPA. These indicators are summarized as averages in the last block of 

rows in Table 6.3.  

Let us first compare the performance of the three rules in IPA under three tree 

management schemes. On the average, in the adaptive and best-first tree management 
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approaches IIR’s performance is better than Rule A and Smear. In the depth-first tree 

management approach, the ranking of the rules are reversed. However, the best results 

of all rules are obtained under the adaptive scheme. It is also observed that under the 

adaptive scheme the average percentage of feasible solutions found is higher in early 

stages of the search tree as compared to Rule A and Smear. The number of problems 

where all feasible solutions are not found within the given time limit is smaller in the 

adaptive scheme as compared to best-first and depth-first approaches. 

A general observation on the implementation of the adaptive method is that the CPU 

times are faster in this approach as compared to other tree management schemes even 

when the number of FSQP calls and the number of function calls outside FSQP are 

larger. There are two main reasons for this: although the maximum number of 

iterations allowed for FSQP is limited to 100 for all versions of IPA, the number of 

iterations taken by the FSQP under the adaptive scheme is smaller because it is 

invoked in the right boxes where feasible solutions actually exist. A second reason is 

that the adaptive scheme works with a smaller list of boxes to rank due to its 

stagewise movement in the tree. Therefore, even in cases where the number of 

functions and FSQP calls are the same, the adaptive scheme works faster than the 

other two tree management methods.  

When we observe results in the adaptive scheme on an individual basis, Rule A 

performs best in Kin1-Modified and its performance is equivalent to IIR’s in Kincox 

and Stewart_Gough. In Dietmaier, IIR is able to identify all 40 solutions in 1.259 

STU’s whereas Smear finds them much earlier. Smear does not work well in 

trigonometric expressions probably because the Jacobian is less discriminating in this 

type of functions. In the trigonometric problem Direct, IIR requires much less 

function calls outside FSQP than Rule A. Furthermore, in the problems where ladder 
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type of constraints exist (Kin2 and Puma), IIR works better than Rule A.  The reason 

is that every constraint removes one variable from the previous one and adds a new 

variable. Thus, IIR produces a larger set of variables to re-partition, the degree of 

parallelism increases, resulting in reduced overestimation in sibling boxes. This puts 

IIR at an advantage over other rules. However, this is not valid in all test problems. 

The scale of parallelism differs among all Rules and a larger scale does not 

necessarily imply better performance or vice versa. Every rule adjusts its own scale of 

adaptive parallelism that may change from 2 (minimum number of variables to be 

partitioned in all Rules) to 8. 

When we compare the best IPA results (IIR-adaptive) with filtering/local consistency 

methods, it is observed that in the ladder type constraints, (PUMA, and KIN2) 

ALIAS/QUAD performs quite well. A good reason for the latter might be that these 

constraints are very suitable for constraint propagation, each time reducing the 

domain of one variable. In trigonometric expressions, filtering methods do not 

produce good results. It is interesting that QUAD, which is particularly developed for 

quadratic problems, is not as successful as IPA in the quadratic Stewart Gough. ICOS 

is slower than ALIAS/QUAD in the three problems where they may be compared. 
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# 
Prob. 

Name of the 
Problem 

 

D, 
# NE, 
# LE 

Category Description # of 
Sol. Source 

1 Kin2 
 

8,8,0 Quadratic 4 quadratic ladder 
type equations,  
4 highly dependent 
quadratic equations  

10 (Lebbah et al. 
2003, Van-
Hentenryck 
1997a) 

2 Kin1-
Modified 

 

6,6,0 Trigonom. Trigonometric, 
highly non-linear, 
high constraint 
dependency 

 
16 

(COPRIN) 

3 KinCox 
 

4,4,0 Quadratic Quadratic, 2 
constraints 
independent 

2 (COPRIN) 

4 Direct 
Kinematics 

 

11,11
,0 

Trigonom. 8 trigonometric, 3 
quadratic high 
constraint 
dependency 

2 (COPRIN) 

5 Stewart-
Gough 

 

9,6,3 Quadratic 6 quadratic, 3 linear 
constraints,  
3 quadratic 
constraints are 
independent  

2 (Lebbah et al. 
2003) 

6 Puma 
 

8,7,1 Quadratic 4 quadratic ladder 
type equations,  
4 highly dependent 
quadratic equations  

16 (COPRIN) 

7 Dietmaier 
 

12,12
,0 

Quadratic 12 quadratic 
equations,  
high constraint 
dependency 

40 (COPRIN) 

Table 6.1 Characteristics of the CCSP Applications. 

(Note: D: Dimension, NE: Nonlinear Equations, LE: Linear Equations, NIE: Nonlinear 
Inequality Equations, LIE: Linear Inequalities) 

Observing these results, one can say (within the scope of the CCSP’s tested here) that 

without advanced symbolic consistency techniques and substitution methods, the 

proposed adaptive IPA (with IIR or Rule A) is as successful as ALIAS/QUAD. IIR 

looks quite promising despite the fact it cannot guarantee immediate reduction of IFY 

in sibling boxes when quadratic and trigonometric expressions exist in the CCSP 

(refer to remarks 4.1 and 4.2 in Chapter 4). One can observe in Table 6.1, that all 

tested CCSP’s have quadratic and trigonometric expressions. 
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IP - Adaptive tree management IP - Worst-First tree 

management 
 

IIR Rule Rule A Smear IIR Rule Rule A Smear 
Avg. CPU (STU) 0.139 0.195 0.404 0.208 0.323 0.431 
Avg. no. of stages 1.86 1.71 2.14 - - - 
Avg. no. of SQP calls 863.71 899.86 1471.86 258.71 411.43 428.00 
Avg. no. of function calls 12035.71 7403.00 3522.14 4314.00 6126.86 5502.43 
No. of unsolved problems 1 1 3 1 2 2 
% of unsolved problems 14.28 14.28 42.86 14.28 28.58 28.58 
No. of best solutions found 3 3 2 0 0 0 
% of best solutions found 42.86 42.86 28.58 0 0 0 
Data not available 0 0 0 0 0 0 

Avg. percentage of solutions found 
Stage 1 71.96 65.35 57.50 - - - 
Stage 2 12.68 16.78 25.54 - - - 
Stage 3 9.52 5.35 1.65 - - - 
Stage 4 1.79 - 1.65 - - - 
Total 95.59 87.49 86.33 94.29 86.43 82.86 

IP - Depth-First tree 
management ALIAS  

IIR Rule Rule A Smear QUAD 
ICOS 

Avg. CPU (STU) 0.554 0.445 0.400 0.235 0.425 
Avg. no. of stages - - - - - 
Avg. no. of SQP calls 6753.14 2043.86 1239.29 - - 
Avg. no. of function calls 48780.7 384500.7 17253.43 - - 
No. of unsolved problems 5 4 2 1 2 
% of unsolved problems 71.42 57.15 28.58 14.28 50* 
No. of best solutions found 0 0 1 3 0 
% of best solutions found 0 0 14.28 42.86 0 
Data not available 0 0 0 0 3 

Avg. percentage of solutions found 
Stage 1 - - - - - 
Stage 2 - - - - - 
Stage 3 - - - - - 
Stage 4 - - - - - 
Total 54.64 56.25 84.82   

Table 6.3. Summary of Results for Kinematics benchmarks 
* Percentage is calculated using the actual number of problems (Actual number of problems = 
total no. of problems – no. of problems for which data is not available.) 
 

6.2. Applications − Constrained Optimization Problem  

Many important real world problems can be expressed in terms of a set of nonlinear 

constraints that restrict the domain over which a given performance criterion is 

optimized, that is, as a Constrained Optimization Problem (COP). In the general COP 

with a non-convex objective function, discovering the location of the global optimum 
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is NP-hard. Hence, locating feasible solutions in a non-convex feasible space is also 

NP-hard. Solution approaches using derivatives developed for solving the COP might 

often be trapped in infeasible and/or sub-optimal sub-spaces if the combined topology 

of the constraints is too rugged. The same problem exists in the discovery of global 

optima in non-convex bound-constrained global optimization problems. The COP has 

augmented complexity as compared to bound-constrained problems due to the 

restrictions imposed by highly non-linear relationships among variables. 

Testing environment 

All runs are executed on a PC with 256 MB RAM, 2.4 GHz P4 Intel CPU, on 

Windows platform. The IP code is developed with Visual C++ 6.0 interfaced with 

PROFIL interval arithmetic library (Knuppel 1994) and FSQP. 

6.2.1. Description of the Problem 

The following applications have been selected to test the performance of the proposed 

IP. 

1. Planar truss design (Hsu et al. 2003) 

Consider the planar truss with parallel chords shown in Figure 6.3 under the action of 

a uniformly distributed factored load p = 25kN/m, including the dead weight of 

approximately 1 kN/m. The truss is constructed from bars of square hollowed cross-

section made of steel 37. For chord members, limiting tensile stresses are 190 Mpa 

and for other truss members 165 MPa.  

The members are divided into four groups according to the indices shown in Figure 

6.3. The objective of this problem is to minimize the volume of the truss, subject to 

stress and deflection constraints. Substituting material property parameters and the 

maximum allowable deflection that is 3.77cm, the optimization model can be 
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simplified. However, the original model is a discrete constrained optimization 

problem (Hsu et al. 2003), which is converted into a continuous optimization problem 

described below.  

Maximize f = 0-(600*a1+2910.4*a2+750*a3+1747.9*a4) (cm3) 

Subject to:  

a1 ≥ 30.0cm2 

a2  ≥ 24.0cm2 

a3 ≥ 14.4cm2 

a4 ≥11.2cm2 

 313920/A1+497245/A2+22500/A3+67326/A4 ≤ 25200(kN-cm) (deflection constraint) 

Search space: A1=[30, 1000]; A2=[24, 1000]; A3=[14.4, 1000]; A4=[11.2, 1000]. 

Here, ai is the area in cm2 with indices i=1, 2, 3, 4. The objective function is a simple 

linear function, but the deflection constraint turns the feasible domain into a non-

convex one.  

Hsu et al. (2003) report an optimal design point for the original discrete model as        

a = (55, 37.5, 15, 15), and the minimum volume of the truss for this solution is 

179608.5. However, for a continuous model, we find a minimum volume of the truss 

as 176645.373 using the IP and other solvers used in the comparison.  

Stress constraints
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Figure 6.3. Optimal design of a planar truss with parallel chords 

Source: Hsu et al. 2003 

 

2. Pressure Vessel Design  (Hsu et al. 2003) 

Figure 6.4 shows a cylindrical pressure vessel capped at both ends by hemispherical 

heads. This compressed air tank has a working pressure of 3,000 psi and a minimum 

volume of 750 feet3. The design variables are the thickness of the shell and head, and 

the inner radius and length of the cylindrical section. These variables are denoted by 

x1, x2, x3, and x4, respectively. The objective function to be minimized is the total cost, 

including the material and forming costs expressed in the first two terms, and the 

welding cost in the last two terms. The first constraint restricts the minimum shell 

thickness and the second one, the spherical head thickness. The 3rd and 4th constraints 

represent minimum volume required and the maximum shell length of the tank 

respectively. However, the last constraint is redundant due to the given search 

domain. The original model for this application is again a discrete constrained 

optimization problem. The continuous model is provided below. 
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Maximize  f = 0-(0.6224*x1*x3* x4 + 1.7781*x1* x3
2

 + 3.1661* x1
2* x4 + 19.84*x1

2* x3) 

Subject to: 

- x1 + 0.0193*x3 ≤  0 

- x2 + 0.00954*x3 ≤  0 

(-π*x3
2*x4 – (4π*x3

3)/3)/1296000 + 1  ≤  0    

x4 – 240 ≤  0    

Search Space: X1= [1.125, 2]; X2 = [0.625, 2]; X3 = [40, 60]; X4 = [40, 120] 

 

 

 

Figure 6.4. Pressure vessel design. 

Source: Hsu et al. 2003 
 

Hsu et al. (2003) list the reported optimal costs obtained by different formulations as 

given in Table 6.4. 

The least cost reported by IIR for designing a pressure vessel subjected to the given 

constraints is 7198.006.  Other solvers report the same objective function value. 
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Problem Formulation Reported optimal solution Reference 

Continuous -7198.01 Hsu et al. (2003) 

-7442.02 Hsu et al. (2003) 
Discrete 

-8129.14 Sandgren (1988) 

Mixed discrete -7198.04 Kannan and Kramer (1994) 

Table 6.4. Reported optimal costs obtained by different formulations for pressure vessel 
design (Hsu et al. 2003) 

 

3. Simplified Alkylation Process (Berna et al. 1980, PrincetonLib) 

This model describes a simplified alkylation process. The nonlinearities are bounded 

in a narrow range and introduce no additional computational burden.  

The design variables for the simplified alkylation process are olefins feed, isobutane 

recycle, acid feed, alkylate yield, isobutane makeup, acid strength, octane number, 

iC4 olefin ratio, acid dilution factor, F4 performance number, alkyate error, octane 

error, acid strength error, and F4 performance number error. The objective function 

maximizes profit per day. The constraints represent alkylate volumetric shrinkage 

equation, acid material balance, isobutane component balance, alkylate definition, 

octane number definition, acid dilution factor definition, and F4 performance number 

definition. The model is provided below. 

Maximize f = 5.04*x3*x4 + 0.35*x13 + 3.36*x14 – 6.3*x1*x2 

Subject to: 

x1 - 0.81971 x3 -0.81967 x14   = 0 

-3x2 + x8*x12   =  -1.33  

22.2 *x8 + x7* x11= 35.82 (acid material balance) 
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-0.325*x5 - 0.01098*x6 + 0.00038*x6
2 + x2*x10 = 0.57425 

0.98*x4 - x5* (x4 + 0.01 x1*x7) = 0 

x1*x9 – x3* (0.13167*x6 - 0.0067*x6
2 + 1.12) = 0 

10*x13 + x14 – x3* x6 = 0 (isobutane component balance) 

Search space:  

X1= [1, 5]; X2= [0.9, 0.95]; X3= [0, 2]; X4= [0, 1.2]; X5= [0.85, 0.93]; X6= [3, 12]; 

X7= [1.2, 4]; X8= [1.45, 1.62]; X9= [0.99, 1.0101]; X10= [0.99, 1.0101];  

X11= [0.9, 1.112]; X12= [0.99, 1.0101]; X13= [0, 1.6]; X14= [0, 2]. 

The optimal solution for alkylation process 1.765 (PrincetonLib).  

4. Stratified Sample Design (PrincetonLib)  

The problem is to find a sampling plan that minimizes cost and yields variances of the 

population limited by an upper bound.  

Maximize f= 0-(( x1 + x2)+( x3 + x4)) 

Subject to 

(0.16/x1)+(0.36/x2)+(0.64/x3)+(0.64/x4)-0.010085≤0 

(4/ x1)+(2.25/ x2)+(1/ x3)+(0.25/ x1)-0.0401≤0 

Search space:  

X1= [100, 400000]; X2= [100, 300000]; X3= [100, 200000]; X4= [100, 100000] 

The optimal solution for this problem is -725.479 (PrincetonLib).  

5. Robot (Benhabib et al. 1987, PrincetonLib) 

This model is designed for the analytical trajectory optimization of a robot with seven 

degrees of freedom.  
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Maximize f = 0-((x1-x8)2+(x2-x9)2+(x3-x10)2+(x4-x11)2+(x5-x12) 2+(x6-x13) 2+(x7-x14) 2) 

Subject to 

cos(x1)+ cos (x2)+ cos (x3)+ cos (x4)+ cos (x5)+ cos (x6)+0.5*cos (x7) =4 

sin (x1)+ sin (x2)+ sin (x3)+ sin (x4)+ sin (x5)+ sin (x6)+0.5*sin(x7) = 4 

Search space:  Xi=[-10, 10]; i = 1, 2, 3, 4, …, 14. 

The optimal solution for this problem is 0.0(PrincetonLib). 

6.2.2. Overview of Solution Methods  

Existing global optimization algorithms can be categorized as deterministic and 

stochastic methods. Extensive surveys on global optimization exist in the literature 

(Törn and Zilinskas 1989, and recently by Pardalos and Romeijn 2002). Although we 

cannot cover the COP literature in detail within the scope of this paper, we can cite 

deterministic approaches including Lipschitzian methods (Hansen et al. 1992, Hansen 

and Jaumard 1995, Pinter 1997), branch and bound methods (Al-Khayyal and Sherali 

2000), cutting plane methods (Tuy et al. 1985), outer approximation (Horst et al. 

1992), primal–dual method (Floudas and Visweswaran 1993, Ben-Tal et al. 1994), 

alpha-Branch and Bound approach (Androulakis et al. 1995), reformulation 

techniques (Smith and Pandelides 1999), interior point methods (Morales et al. 2001, 

Forsgren et al. 2002) and interval methods (Hansen 1992, Kearfott 1996c, Csendes 

1997).  

We show, on a test bed of practical applications, that the IIR with adaptive tree 

management is a viable method in solving the general COP with equalities and 

inequalities. The results obtained are compared with commercial software such as 

Baron, Minos and other solvers interfaced with GAMS (www.gams.com). 
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6.2.3. Numerical Results 

The numerical results are provided in Table 6.4. We compare IP results with five 

different solvers that are linked to the commercial software GAMS (www.gams.com) 

and FSQP (Zhou and Tits 1996, Lawrence et al. 1997) code provided by AEM 

(www.aemdesign.com/FSQPmanyobj.htm). The solvers used in this comparison are 

Baron (Sahinidis 2003), Conopt (Drud 1996), LGO (Pinter 1997), Minos (Murtagh 

and Saunders 1987) and Snopt (Gill et al. 1997). 

For each application we report the absolute deviation from the global optimum 

obtained at the end of the run and the CPU time taken for each run in Standard Time 

Units (STU, Scherbina et al. 2002). One STU is equivalent to 229.819 seconds on our 

machine. GAMS solvers are run until each solver terminates on its own without 

restricting the CPU time taken or the number of iterations. FSQP is run with a 

maximum number of iterations allowed, that is 100 in this case. However, in these 

applications FSQP never reaches this iteration limit. IP is run until no improvement in 

the CLB is obtained as compared with the previous stage of the search tree. However, 

if a feasible solution has not been found yet, the stopping criterion becomes the least 

feasibility degree of uncertainty, INFY. 

In Table 6.5, we report additional information for IP. For each application, we report 

the number of tree stages where IP stops, the number of times FSQP is invoked, the 

average number of variables partitioned in parallel for a parent box (the maximum 

and minimum numbers are also indicated in parenthesis), and the number of function 

calls invoked outside FSQP. We provide two summaries of results obtained excluding 

and including the robot application. The reason is that Baron is not enabled to solve 

trigonometric models. 
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While analyzing results, we observe that Snopt identifies the optimum solution for 

four of the applications excluding the robot. However, its performance is inferior for 

the robot as compared to IP and FSQP. In the robot application, FSQP identifies the 

global optimum solution in the initial box itself (stage zero in IP). That is why IP 

stops at the first stage. The performance of the local optimizers, Minos and Conopt, is 

significantly inferior in this problem. In the pressure vessel and planar truss 

applications, all GAMS solvers, IP and FSQP identify the global optimum taking short 

CPU times (IP and Baron take longer CPU time). In Alkyl, Minos is stuck at a local 

stationary point while BARON and IP take longer CPU times. In the Sample 

application, LGO does not converge and FSQP ends up with a very inferior solution. 

On the other hand, IP runs for 6 tree stages and results in an absolute deviation that is 

compatible with those of Baron, Conopt and Minos.  

When the final results summary is analyzed, we observe that IP’s performance is as 

good as Baron’s (which is a complete and reliable solver) in identifying the global 

optimum and CPU time. The use of FSQP in IP rather (rather than the Generalized 

Reduced Gradient local search procedure available in Baron) becomes an advantage 

for IP in the Robot. Furthermore, IP does not have any restrictions in dealing with 

trigonometric functions. The impact of interval partitioning on performance is 

particularly observed in the Sample application where FSQP fails to converge. For 

these applications, the number of tree stages that IP has to run for is quite small (two) 

except for the Sample. The average number of variables partitioned in parallel in IP 

varies between 2 and 4. The dynamic parallelism imposed by the weighting method 

seems to be effective as it is observed that different scales of parallelism are adopted 

for different applications. 
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Prob. Dim. Performance IIR FSQP Baron Conopt LGO Minos Snopt 

Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 4 CPU(STU) 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 4 CPU(STU) 0.001 0.000 0.001 0.000 0.000 0.000 0.000 

Deviation 0.000 0.000 0.000 0.000 0.000 1.765 0.000 
3 14 CPU(STU) 0.263 0.000 0.292 0.000 0.003 0.000 0.000 

Deviation 1.200 26706.5 1.158 1.201 ∞ 1.168 0.000 
4 4 CPU(STU) 0.056 0.000 0.000 0.000 0.002 0.000 0.000 

Summary 

Avg. deviation 0.300 6676.63 0.290 0.300 0.000 0.733 0.000 
Std. dev. for it 0.600 13353.25 0.579 0.601 0.000 0.881 0.000 
Avg. CPU time 0.080 0.000 0.073 0.000 0.001 0.000 0.000 
# best solutions 3 3 3 3 3 2 4 
% of best solutions 75 75 75 75 75 50 100 
# unsolved problems 0 0 0 0 1 0 0 
% of unsolved problems 0 0 0 0 25 0 0 

Deviation 0.000 0.000 27.1 5.463 343.022 13.391
5 14 CPU(STU) 0.000 0.000 NA 0.000 0.046 0.001 0.000 
Final Summary 

Avg. deviation 0.240 5341.300 0.299 5.659 1.366 69.191 2.678 
Std. dev. for it 0.537 11943.510 0.579 11.994 2.732 153.078 5.989 
Avg. CPU time 0.064 0.000 0.073 0.000 0.010 0.000 0.000 
# best solutions 4 4 3 3 3 2 4 
% of best solutions 80 80 60 60 60 40 80 
# unsolved problems 0 0 1 0 1 0 0 
% of unsolved problems 20 0 20 0 20 0 0 

Table 6.5. Comparison of Results for constrained optimization applications. 

The problem names (global optimum values) are Pressure Vessel (-7198.006), Planar 

Truss (-176645.373), Alkyl (1.765), and Sample (-725.479), respectively. For the IIR 

method the number of stages, FSQP calls, and the average number of variables in 

parallel (maximal/minimal), and the number of function calls were (2, 18, 3.04/4.2, 

402), (2, 27, 3/4.2, 257), (2, 631, 4.04/5.3, 8798), and (6, 917, 3.56/4.3, 12000), 

respectively. The summary of the average results for the first 4 problems is: for the 

number of stages is 3.000, the number of FSQP calls is 398.250, and the average 

number of function calls is 5364.25. For the problem 5, robot optimization, the global 

optimum was zero, and the efficiency measures (1, 1, 2.25/3.2, 62). The final 

summary provides the following average figures: the number of stages is 2.600, the 
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number of FSQP calls is 318.800, and the average number of function calls is 

4303.800. 

6.3. Summary of results 

Table 6.6 illustrates the performance of the best strategies recommended for solving 

CCSP and COP based applications from the field of kinematics, robotics, engineering 

design and so on. It also illustrates the maximum size of the problems tested here. 

Problem 
Class  Recommended 

Strategy 
Performance 

measure 
Performance 

value 

Maximum 
problem 

dimension 
Best of IP 
configuration 

IIR_adaptive tree 
management CPU time 0.139 11 

CCSP Best of other 
methods 
/solvers 

ALIAS / QUAD CPU time 0.235 12 

Best of IP 
configuration 

IIR_adaptive_non-
penalty 

Dev. From 
optimality 0.240 14 

COP 
 Best of other 

methods / 
solvers 

Baron Dev. From 
optimality 0.290 14 

Table 6.6. Summary of computational results on applications 

In case of CCSP applications, we observe that IIR_adaptive tree management method 

is the best IIR configuration and its performance is superior (almost half) as compared 

to, that of ALIAS/QUAD.  

For the COP applications, IIR_adaptive_non-penalty is the best IIR configuration and 

its performance similar to Baron’s. The average deviation from the optimal solution 

for Baron is close to IIR_adaptive tree management with non-penalty box ranking. 

The overall performance of IIR is superior in solving CCSP application problems. 

However, in case of the COP applications, IIR is almost as effective as Baron.  
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Chapter 7 

Conclusions and Future Recommendations 

7.1. Conclusions 

Global Optimization Problems are encountered in many scientific fields concerned 

with industrial applications such as kinematics, chemical process optimization, 

molecular design, and so on. When non-linear relationships among variables are 

defined by problem constraints resulting in non-convex feasible spaces the problem of 

identifying feasible solutions may become very hard. Consequently, finding the 

location of the global optimum in the problem is more difficult. This research 

develops a generic methodology that can solve BCOP, CCSP and COP. A new 

subdivision direction selection rule (IIR) has been proposed in this research for bound 

constrained optimization, continuous constraint satisfaction and constrained 

optimization problems.  

A variant of IIR, IIR_Widths, has also been proposed for bound constrained 

optimization problems. The new variant considers interval width as well as sub-

expression bounds. In the BCOP, the proposed two rules target directly on the 

uncertainty degree of the objective function with respect to the optimality. Reducing 

these uncertainties as such results in the reliable detection of sub-optimal boxes, 

thereby diminishing the number of boxes to be assessed.   

The efficiency of the proposed variants is illustrated on well-known bound 

constrained test functions and compared with established subdivision direction 

selection methods from the literature.   
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For constraint satisfaction and constrained optimization problems a new adaptive 

search tree framework where nodes (boxes defining different variable domains) are 

explored using a restricted hybrid depth-first and best-first branching strategy has 

been proposed. This hybrid approach has also been used for activating local search in 

boxes with the aim of identifying different feasible stationary points. The proposed 

search tree management approach improves the convergence of the interval 

partitioning method that is also supported by the new parallel subdivision direction 

selection rule.  

In the CCSP and COP, the proposed rule targets directly the uncertainty degrees of 

constraints (with respect to feasibility) and the uncertainty degree of the objective 

function (with respect to optimality). Reducing these uncertainties as such results in 

the early and reliable detection of infeasible and sub-optimal boxes, thereby 

diminishing the number of boxes to be assessed. Consequently, chances of identifying 

local stationary points during the early stages of the search increase.  

For continuous constraint satisfaction problems, the effectiveness of the proposed 

interval partitioning algorithm has been compared with the published results of 

established symbolic-numeric methods for solving CCSP on a number of state-of-the-

art benchmarks. The effectiveness has also been illustrated on several practical 

applications. 

For constrained optimization problems, the effectiveness of the proposed interval 

partitioning algorithm has been illustrated on several state of the art benchmark 

problems and also several practical applications and compared with professional 

commercial local and global solvers. Empirical results have shown that this approach 

is as good as available COP solvers. 
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The contribution of this research can be briefly summarized as follows: 

• A generic approach, IIR, has been proposed for BCOP, CCSP, and COP. This 

approach makes use of information derived from the problem structure and no 

additional information other than function ranges is needed. 

• Numerical tests on a wide range of benchmark problems and commercial 

optimization software show that IIR is successful in solving BCOP and COP 

as well as the CSPs.  

• In case of the BCOP, the average CPU time required for IIR_Widths is almost 

one-fourth of Rule B. Similarly, in the CCSP, the average CPU time required 

for IIR_adaptive tree management is half of ALIAS / QUAD’s.  

• For the COP (non-trigonometric functions), the average deviation from the 

optimal solution for Baron is close to IIR_adaptive tree management with non-

penalty box ranking. However, the difference in performance is not 

statistically significant (at a 5% significance level). For trigonometric COP 

problems, the average deviation from optimal solution for IIR_adaptive_non-

penalty is almost of the 1/1000 of Snopt.  

• The adaptive tree management strategy proposed here can also be used in non-

interval partitioning algorithms such as Baron and LGO. It is effective in the 

sense that it allows going deeper into selected promising parent boxes while 

providing a larger perspective on how promising a parent box is by comparing 

it to all other boxes available in the current stage’s box list.  

7.2. Recommendations for Future Research 

Future work that merits further investigation requires the following feature 

developments. 
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i. Ranking constraints in a constrained global optimization problem  

One of the basic problems that most traditional techniques face in solving a non-

convex constrained optimization or constraint satisfaction problem is the slow 

convergence leading to unacceptable response times for constraint systems. Feasible 

solutions for constraint systems are found by constraint propagation methods which 

reduce variable ranges by sequential substitution. The main reason behind the slow 

convergence of constraint propagation methods is the waste of computations on an 

inappropriate constraint, which does not result in a good reduction in the search space 

(Lhomme et al. 1998). This brings about motivation to develop new approaches by 

which a ranking approach is proposed in solving the constrained optimization 

problem or constraint satisfaction problems before processing them. The new 

approach will define a performance index for each constraint based on the pending 

status and sub-expression complexity of the constraint. Then, constraints will be 

sorted based on their degree of uncertainty and sub-expression complexity. This prior 

step will improve the efficiency of any methodology used for solving the COP or 

CCSP irrespective of the application field.  

ii.  Dealing with discrete problems  

Vaidyanathan et al. (1996) propose a methodology for solving discrete problems 

using interval analysis, which is a modification made to the basic constrained 

optimization problem solving algorithms. However, research in this field is very 

limited. 

The development of new methodologies for solving nonlinear discrete problems will 

definitely be a good contribution in this field. The discrete domain defined for a given 

global optimization problem can be assumed as a continuous domain (box). However, 
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the partitioning of the domain would be modified based on the discrete values defined 

for a given variable. This new approach may help in faster convergence because of 

shorter pending lists preserved when compared to a traditional discrete solution 

algorithm. Also, the new adaptive tree management proposed in this thesis would 

reduce the limited use of memory and CPU time for large-scale nonlinear discrete 

problems.  

This problem has many industrial applications in different fields such as chemical 

engineering, power transmission, planning, and so on, which need extensive 

computations with existing solution techniques. 

iii. Analysis of different merit functions for pending box ranking 

The current merit function defined in this thesis is a static penalty function. However, 

it is worthwhile to try different merit functions such as dynamic and adaptive penalty 

functions defined in the literature (Joines and Houck 1994, Michalewicz and Attia 

1994, Carlson et al. 1998, Morales and Quezada 1998, Yeniay 2005). The merit 

function an importance element that may improve algorithm efficiency in the box 

selection procedure. It may also improve the convergence of the algorithm through 

faster deletion of infeasible subspaces.  

The new merit function analysis will provide a robust merit function for the 

methodology defined in this thesis.  This will help the algorithm to solve large-scale 

nonlinear nonconvex problems.  

iv. Extension to mixed integer nonlinear programming problems 

Vaidyanathan et al. (1996) propose a methodology for solving discrete problems 

using interval analysis, which is a modification made to the basic constrained 
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optimization problem solving algorithms. However, research in this field is very 

limited. 

Similar to pure problems described previously, the discrete domain defined for a 

given problem can be assumed as a continuous domain like any other continuous 

domain, but partitioning of the discrete variables would be modified while continuous 

variables would be partitioned as usual.  

v. Extension of adaptive tree management strategy to other solvers 

Tree management is one of the factors that influences the efficiency of any 

partitioning algorithm. The new adaptive tree management strategy proposed in this 

thesis can also be used in non-interval partitioning algorithms such as Baron and 

LGO. It is effective in the sense that it allows going deeper into selected promising 

parent boxes while providing a larger perspective on how promising a parent box is 

by comparing it to all other boxes available in the current stage’s box list. 
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Appendix A 
Detailed computational results on Continuous Constraint Satisfaction Problems 
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Appendix – B 
 
List of Constrained Optimization Problems 
 

PROBLEM 

(Dim, # Nonlin. 
Eq., # Lin. Eq., # 

Nonlin. Ineq., 
#Lin. Ineq.) 

Description Reference 

Aircraftb 18, 5, 5, 0, 0  

Objective function is a second degree 
polynomial function 
5 quadratic equations 
5 linear equation 

Coconut 

Avgasb 8, 0, 0, 10, 0 Objective function is a quadratic function 
10 linear inequality constraints Princetonlib 

Alkyl 14, 6, 1, 0, 0 

Objective function is a quadratic function 
2 highly dependent quadratic equations 
4 quadratic equations 
1 linear equation 

Coconut 

Bt4 3, 1, 1, 0, 0 
Objective function is a quadratic function 
1 linear equation 
1 quadratic equation 

Coconut 

Bt8 5, 2, 0, 0, 0  Objective function is a quadratic function 
2 quadratic equation Coconut 

Bt12 5, 3, 0, 0, 0 Objective function is a quadratic function 
3 quadratic equation Coconut 

Bt11 5, 2, 1, 0, 0 
Objective function is a quadratic function 
2 quadratic equation 
1 linear equation 

Coconut 

Bt7 5, 3, 0, 0, 0 
Objective function is a quadratic function 
1 quadratic equation 
2 second degree polynomial equation 

Coconut 

Dispatch 4, 1, 0, 0, 1 
Objective function is a second degree function 
1 quadratic equation 
1 linear equality 

Coconut 

Dipigri 7, 0, 0, 4, 0 

Objective function is a quadratic function 
1 quadratic inequality 
3 nonlinear second degree polynomial 
inequalities 

Coconut 

Degenlpa 20, 0, 14, 0, 0 Objective function is a linear function 
14 linear equations Coconut 

Degenlpb 20, 0, 15, 0, 0 Objective function is a linear function 
15 linear equations Coconut 

Eigminc 22, 22, 0, 0, 0 
Objective function is a linear function 
1 second degree polynomial equation 
21 quadratic equations 

Coconut 

Ex5_2_4 7, 0, 1, 3, 2 

Objective function is a quadratic function 
1 linear equation 
2 linear inequalities 
3 nonlinear quadratic inequalities 

Coconut 

Ex9_1_4 10, 4, 5, 0, 0 
Objective function is a linear function 
5 linear equation 
4 quadratic equations 

Coconut 

Ex8_4_2 24, 10, 0, 0, 0 Objective function is a second degree Coconut 
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PROBLEM 

(Dim, # Nonlin. 
Eq., # Lin. Eq., # 

Nonlin. Ineq., 
#Lin. Ineq.) 

Description Reference 

polynomial function 
10 quadratic equation 

Ex9_2_5 7, 3, 4, 0, 0, 0 

Objective function is a second degree 
polynomial function 
3 quadratic equation 
4 linear equation 

Coconut 

Ex14_1_5 6, 0, 4, 2, 0 

Objective function is a linear function 
2 highly interactive quadratic equations 
4 linear equations 
 

Coconut 

Ex9_2_6 16, 6, 6, 0, 0 

Objective function is a second degree 
polynomial function 
6 quadratic equations 
6 linear equations 
 

Coconut 

Ex9_2_7 10, 4, 5, 0, 0 

Objective function is a second degree 
polynomial function 
4 quadratic equations 
5 linear equations 
 

Coconut 

Ex9_1_2 10, 4, 5, 0, 0 
Objective function is a linear function 
4 quadratic equations 
5 linear equations 

Coconut 

Ex2_1_9 10, 0, 1, 0, 0 Objective function is a quadratic function 
1 linear equations Coconut 

Ex2_1_3 13, 0, 0, 0, 9 
Objective function is a second degree 
polynomial function 
9 linear inequality 

Coconut 

Ex8_4_1 22, 10, 0, 0, 0 
Objective function is a second degree 
polynomial function 
10 quadratic equations 

Coconut 

Ex8_4_5 15, 11, 0, 0, 0 
Objective function is a second degree 
polynomial function 
11 quadratic equations 

Coconut 

F_e 7, 0, 0, 3, 4 

Objective function is a linear function 
1 second degree polynomial inequalities 
2 quadratic inequalities 
4 linear inequalities 
 

Epperly 

Fermat_scop_v
areps 5, 0, 0, 3, 0 Objective function is a linear function 

3 nonlinear inequalities Princetonlib 

Fp_2_1 6, 0, 0, 1, 1 

objective function is a linear function 
1 nonlinear second degree polynomial 
inequality 
1 linear inequality 

Epperly 

Genhs28 10, 0, 8, 0, 0 objective function is a quadratic function 
8 linear equations Coconut 

Hs087 11, 4, 2, 0, 0  
objective function is a linear function 
4 nonlinear trigonometric equations 
2 linear equations 

Coconut 
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PROBLEM 

(Dim, # Nonlin. 
Eq., # Lin. Eq., # 

Nonlin. Ineq., 
#Lin. Ineq.) 

Description Reference 

Hs053 5, 0, 3, 0, 0 objective function is a quadratic function 
3 linear equations Coconut 

Hs056 7, 4, 0, 0, 0 
objective function is a interactive quadratic 
function 
4 nonlinear trigonometric equations 

Coconut 

Hs407 5, 3, 0, 0, 0 

objective function is a highly interactive 
quadratic function 
1 third degree polynomial equation 
1 second degree polynomial equation 
1 quadratic equation 

Coconut 

Hs108 9, 0, 0, 12, 0 
objective function is a quadratic function 
1 second degree polynomial equation 
11 quadratic equation 

Coconut 

Hs080 5, 3, 0, 0, 0 

objective function is a exponential function 
1 second degree polynomial equation 
1 quadratic equation 
1 third degree polynomial equation 

Coconut 

Hs043 4, 0, 0, 3, 0 
objective function is a second degree 
polynomial function 
3 second degree polynomial inequalities 

Coconut 

Hs116 13, 0, 0, 10, 5 
objective function is a linear function 
10 quadratic inequalities 
5 linear inequalities 

Coconut 

Himmel11 9, 3, 0, 0, 1 
objective function is a quadratic function 
1 linear inequality 
3 quadratic equation 

Coconut 

Immum 21, 0, 7, 0, 0 
objective function is a second degree 
polynomial function 
7 linear equations 

Coconut 

Lootsma 3, 0, 0, 2, 0 
objective function is a three degree polynomial 
function 
2 second degree polynomial inequalities 

Coconut 

Lewispol 6, 6, 3, 0, 0 

objective function is a second degree 
polynomial function 
6 third degree polynomial equations 
3 linear equations 

Coconut 

Mwright 5, 3, 0, 0, 0 
objective function is a quadratic function 
1 quadratic equations 
2 second degree polynomial equations 

Coconut 

Mhw4d 5, 3, 0, 0, 0 

objective function is a quadratic function 
1 quadratic equations 
1 second degree polynomial equations 
1 third degree polynomial equations 

Coconut 

Madsen 3, 0, 0, 6, 0 
Objective function is a linear function 
4 trigonometric inequalities 
2 quadratic inequalities 

Coconut 

Minmaxrb 3, 0, 0, 2, 2 
Objective function is a linear function 
2 linear inequalities 
2 second degree polynomial inequalities 

Coconut 

Median_scop_v 5, 0, 0, 3, 0 Objective function is a linear function Coconut 



 

 220

PROBLEM 

(Dim, # Nonlin. 
Eq., # Lin. Eq., # 

Nonlin. Ineq., 
#Lin. Ineq.) 

Description Reference 

areps 3 nonlinear inequalities 

Matrix2 6, 0, 0, 2, 0 Objective function is a quadratic function 
2 quadratic inequalities Coconut 

Mistake 9, 0, 0, 12, 0 
Objective function is a quadratic function 
10 quadratic inequalities 
2 second degree polynomial inequalities 

Coconut 

O32 5, 0, 0, 6, 0 Objective function is a quadratic function 
6 quadratic inequalities Coconut 

Pgon 12, 0, 0, 15, 5 
Objective function is a trigonometric function 
15 nonlinear trigonometric inequalities 
5 linear inequalities 

Coconut 

Robot 14, 2, 0, 0, 0 Objective function is a quadratic function 
2 nonlinear trigonometric equations Coconut 

Rk23 17, 7, 4, 0, 0 

Objective function is a linear function 
4 quadratic equations 
3 highly interactive quadratic equations 
4 linear equations  

Coconut 

S381 13, 0, 1, 0, 3 
Objective function is a linear function 
1 linear equations 
3 linear inequalities  

Princetonlib 

S355 8, 5, 0, 0, 0 

Objective function is a second degree 
polynomial function 
4 quadratic equations 
1 second degree polynomial equation 

Princetonlib 

S336 3, 1, 1, 0, 0 
Objective function is a linear function 
1 linear equation 
1 second degree polynomial equation 

Princetonlib 

S262 4, 0, 1, 0, 3 
Objective function is a linear function 
1 linear equation 
3 linear inequalities 

Princetonlib 

S203 5, 3, 0, 0, 0 
Objective function is a Second degree 
polynomial function 
3 quadratic equation 

Princetonlib 

Springs_nonco
nvex 32, 0, 0, 10, 0 

Objective function is a Second degree 
polynomial function 
9 quadratic inequalities 
1 second degree polynomial inequality 

Princetonlib 

Steifold 4, 3, 0, 0, 0 

Objective function is a Second degree 
polynomial function 
1 quadratic equation 
2 second degree polynomial equations 

Balogh and 
Toth 

Sample 4, 0, 0, 2, 0 Objective function is a linear function 
2 quadratic inequalities Princetonlib 
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