
NNEEWW IINNTTEERRVVAALL PPAARRTTIITTIIOONNIINNGG

AALLGGOORRIITTHHMMSS FFOORR

GGLLOOBBAALL OOPPTTIIMMIIZZAATTIIOONN PPRROOBBLLEEMMSS

CChhaannddrraa SSeekkhhaarr PPeeddaammaalllluu

SScchhooooll ooff MMeecchhaanniiccaall aanndd AAeerroossppaaccee
EEnnggiinneeeerriinngg

A thesis submitted to the Nanyang Technological

University in fulfillment of the requirement for the
degree of

Doctor of Philosophy

2006 2007

 i

Abstract

Global Optimization Problems are encountered in many scientific fields concerned

with industrial applications such as kinematics, chemical process optimization,

molecular design, and so on. When non-linear relationships among variables are

defined by problem constraints resulting in non-convex feasible spaces the problem of

identifying feasible solutions may become very hard. Consequently, finding the

location of the global optimum in the problem is more difficult. The objective of this

thesis is to develop a generic methodology, which can solve bound constrained

optimization problems (BCOP), continuous constraint satisfaction problems (CCSP)

and constrained optimization problems (COP). A new subdivision direction selection

method is proposed in this research for these problems.

A variant for the proposed new subdivision selection method is also proposed for

BCOP. The new variant considers the width of interval in addition to sub-expression

bounds. The proposed two rules for BCOP target directly on the uncertainty degree of

the objective function (with respect to the optimality). Reducing these uncertainties as

such results in the reliable detection of sub-optimal boxes, thereby diminishing the

number of boxes to be assessed.

The efficiency of the proposed variants is illustrated on well-known bound

constrained test functions and compared with established subdivision direction

selection methods from the literature.

For CCSP and COP a new adaptive search tree framework where nodes (boxes

defining different variable domains) are explored using a restricted hybrid depth-first

and best-first branching strategy is proposed. This hybrid approach is also used for

activating local search in boxes with the aim of identifying different feasible

 ii

stationary points. The proposed search tree management approach improves the

convergence of the interval partitioning method that is also supported by the new

parallel subdivision direction selection rule used in selecting the variables to be

partitioned in a given box.

The proposed rule targets directly the uncertainty degrees of constraints with respect

to feasibility and the uncertainty degree of the objective function with respect to

optimality. Reducing these uncertainties as such results in the early and reliable

detection of infeasible and sub-optimal boxes, thereby diminishing the number of

boxes to be assessed. Consequently, chances of identifying local stationary points

during the early stages of the search increase.

For CCSP, the effectiveness of the proposed interval partitioning algorithm is

compared with published results of established symbolic-numeric methods for solving

CCSP on a number of state-of-the-art benchmarks. The effectiveness is also illustrated

on several practical applications.

For COP, the effectiveness of the proposed interval partitioning algorithm is

illustrated on several state-of-the-art benchmarks and also several practical

applications and compared with professional commercial local and global solvers.

Empirical results show that this approach is as good as available COP solvers.

 iii

Acknowledgments

I would like express my sincerest gratitude and appreciation to my supervisor,

Associate Professor. Arun Kumar, for his invaluable advises and continued direction.

I am particularly very grateful to Prof. Linet Özdamar, who supervised me for about

two years, for her excellent guidance, support and encouragement in carrying out this

research work. I am very thankful to her for introducing me to the field of Global

Optimization and Interval Methods. Without their support and inspiration, this thesis

would never be completed. Their patience, understanding and encouragement have

enabled me to pursue my research effectively.

I wish to express my deepest gratitude and appreciation to Prof. Tibor Csendes for

enabling the overseas research attachment (May 2005 to December 2005) with

University of Szeged. He has always been there to help me in both technical and non-

technical matters. His generous support and help enabled for successful completion of

the overseas research attachment and the thesis. Without his support and inspiration,

this thesis would never be completed.

I wish to thank Prof. Hermann Schichl (University of Vienna), Prof. Arnold Neumaier

(University of Vienna) and Prof. Martine Ceberio (University of Texas) for their

invaluable comments, suggestions and fruitful discussions on the thesis.

I wish to thank Prof. Andre Tits (Electrical Engineering and the Institute for Systems

Research, University of Maryland, USA) for providing the source code of CFSQP.

I would also like to acknowledge the opportunity provided to me by the Division of

Systems and Engineering Management, School of Mechanical and Aerospace

Engineering, and Nanyang Technological University to carry out this research work.

 iv

Special thanks to the professors, staff, and colleagues in the Center for Supply Chain

Management, Nanyang Technological University, Singapore for their assistance and

kind cooperation.

I would like to thank Applied Informatics, University of Szeged, for providing the lab

and other facilities to under take my research work during my overseas research

attachment. I also wish to thank the system administrator (Mrs. Marianna and other

system admins) and other staff in Applied Informatics for their kind help and support.

I would like to thank Dr. Janos Posfai, and Dr. Kshitiz Chaudhary in editing this

thesis.

Finally, I would thank my parents (Dr. P. Anjaneyulu and Anu Radha) and brothers

(Dr. P. B. Srinivas, and Dr. P. Raghuveer) who have been extremely supportive

during my research. And it would be great injustice if I didn’t thank my friends in

Singapore (Madhu, Damu, Manjula, Uma, Ramakrishna, Lakshmi, Wu Yong, and

others) and Hungary (Tamas, Balázs, and others) for their kind support during my

research.

 v

Table of Contents

Abstract i

Acknowledgements iii

Table of Contents v

List of Figures ix

List of Tables x

Notation xi

1 Introduction 1

 1.1 Background 1

 1.2 Categories of Global Optimization Problems 2

 1.3 Global Optimization Methods 4

 1.4 Objective and Scope 7

1.5 Outline of the Thesis 9

2 Literature Review 10

 2.1 Pervious Work on Global Optimization 10

 2.1.1 Local Search Methods 11

 2.1.2 Global Search Methods 14

 2.2 Interval Arithmetic 38

 2.2.1 Foundations 38

 2.2.2 Basics of Interval Arithmetic and Terminology 39

 2.2.3 Extended Interval Arithmetic 41

 2.2.4 The Dependency Problem 43

 2.2.5 Interval Arithmetic Properties 44

 2.2.6 Inclusion Functions 45

 2.2.7 Interval Computations and Mathematical Proofs 49

 vi

 2.2.8 Interval Newton Method 50

 2.2.9 Interval Methods for Uncertainty 51

 2.2.10 Motivation in Selection of Interval Methods 52

 2.2.11 Applications of Interval Analysis 53

 2.3 Feasible Sequential Quadratic Programming (FSQP) 54

 2.3.1 Introduction 54

 2.3.2 The Basic FSQP Algorithm 56

 2.3.3 Why Feasibility? 57

 2.3.4 Nonlinear Equality Constraints 57

 2.3.5 Line Search 58

 2.3.6 Multiple Objectives/Constraints 58

 2.3.7 Automatic Differentiation 59

 2.3.8 Selected Applications 59

 2.3.9 Motivation in Selection of FSQP 60

3 Tree Management Approach 61

 3.1 Introduction 61

 3.2 Adaptive Tree Management 71

 3.2.1 Introduction 71

 3.2.2 Detailed description 73

4 Interval Inference for Global Optimization 79

 4.1 Interval Partitioning Algorithms 79

 4.2 Basic Terminologies and Definitions 85

 4.3 New Interval Partitioning Algorithms 88

 4.3.1 Bound Constrained Optimization Problems 88

 4.3.2 Continuous Constraint Satisfaction Problems and Constrained
Optimization Problems

90

 vii

 4.4 Frame Work of Interval Inference Rule (IIR) 95

 4.4.1 General Overview 95

 4.4.2 Interval Inference Rule 96

 4.5 New Variant of IIR (IIR_Widths) 114

 4.5.1 An Illustration of IIR and IIR_Widths Procedures 115

4.6 Convergence Proof of IIR 117

5 Computational results 125

 5.1 Bound Constrained Optimization 125

 5.1.1 Comparison Basis 125

 5.1.2 Test Functions 126

 5.1.3 Computational Results 128

 5.2 Continuous Constraint Satisfaction Problems 131

 5.2.1 Comparison Basis 131

 5.2.2 Test Functions 133

 5.2.3 Computational Results 135

 5.3 Constrained Optimization 143

 5.3.1 Comparison Basis 143

 5.3.2 Test Functions 145

 5.3.3 Computational Results 147

 5.4 Summary of Results 150

6 Applications 153

 6.1 Applications − Continuous Constraint Satisfaction Problem 153

 6.1.1 Description of the Problem 153

 6.1.2 Overview of Solution Methods for Kinematics Problems 157

 6.1.3 Numerical Results 160

 6.2 Applications − Constrained Optimization Problem 168

 viii

 6.2.1 Description of the Problem 169

 6.2.2 Overview of Solution Methods 175

 6.2.3 Numerical Results 176

6.3 Summary of Results 179

7 Conclusions and Future Recommendations 180

 7.1 Conclusions 180

 7.2 Recommendations for Future Research 182

References

186

Appendix

211

 A Detailed computational results on Continuous Constraint Satisfaction
Problems

211

 B List of Constrained Optimization Problems 217

 ix

List of Figures

Figure 3.1 Order of Node Generation for Breadth-First Search 62

Figure 3.2 Order of Node Generation for Depth-First Search 64

Figure 3.3 Order of Node Generation for Depth-First Iterative Deepening
Search

66

Figure 3.4 Initial steps of the adaptive iterative deepening procedure. 73

Figure 3.5 Implementation of the adaptive iterative deepening procedure. 78

Figure 4.1 Generic pseudocode for IPA. 89

Figure 4.2 Integrated Frame work of Interval Inference Rule 97

Figure 4.3 Sequence of parser functions 98

Figure 4.4 Interval propagation for the expression

“1-((10*x1)+(6*(x1*x2))-(6*(x3*x4)))”.

100

Figure 4.5 Implementation of IIR_Tree over the binary tree for

“1-((10*x1)+(6*(x1*x2))-(6*(x3*x4)))=0”.

101

Figure 4.6 Procedure IIR _Tree: Recursive tree traversal of IIR. (Input: Root
node; Output: pair of source leaves - variables)

103

Figure 4.7 Pseudocode for IIR (Input: node at level k; Output: labeled node
at level k+1)

103

Figure 4.8 Demonstration of the run of IIR on the

1 2 3 4 1 3(()*()) ()x x x x sin x x+ + + + .

115

Figure 4.9 Demonstration of the run of IIR_Widths on the

1 2 3 4 1 3(()*()) ()x x x x sin x x+ + + + .

116

Figure 6.1 A general 6-R Manipulator 154

Figure 6.2 The basic notation of 6-R Manipulator 155

Figure 6.3 Optimal design of a planar truss with parallel chords 171

Figure 6.4 Pressure vessel design. 172

 x

List of Tables

Table 4.1. Summary of symbolic characteristics pertaining to each variable
and each constraint

111

Table 4.2. Weight calculation of each variable in each constraint and their
final weights

112

Table 4.3. Domain boundaries of sibling boxes 120

Table 5.1. Description and references of the bound constrained optimization
test functions.

127

Table 5.2. Comparison of numerical results for bound constrained
optimization problems.

130

Table 5.3. Total CPU times in seconds for small and larger size bound
constrained optimization problems.

131

Table 5.4. List of CCSP benchmarks. 134

Table 5.5. Summary of results for CCSP benchmarks 140

Table 5.6. List of COP benchmarks used in experiments 146

Table 5.7. Summary of results for non-trigonometric COP. 149

Table 5.8. Summary of results for trigonometric COP. 150

Table 5.9 Summary of computational results 151

Table 6.1. Characteristics of the CCSP Applications. 164

Table 6.2. Comparison of results for CCSP applications 165

Table 6.3. Summary of results for Kinematics benchmarks 168

Table 6.4. Reported optimal costs obtained by different formulations for
pressure vessel design

173

Table 6.5. Comparison of results for constrained optimization applications. 178

Table 6.6. Summary of computational results on applications 179

 xi

Notation

Through out the Thesis

x Real variable.

X Cartesian product of intervals (also known as Box) .

X Interval of a variable x.

X Upper bound of variable x.

X Upper bound of variable x.

z (.) Real valued function z.

Z(.) Inclusion function of z.

()Z X Upper bound of the inclusion function Z over box X.

()Z X Lower bound of the inclusion function Z over box X.

f (.) Objective function.

g (.) Inequality constraints.

h (.) Equality constraints.

c (.) Real continuous constraint.

C Constraint System.

PFY Degree of uncertainty with regard to optimality.

PGi
Y Degree of uncertainty of an inequality constraint.

PHi
Y Degree of uncertainty of an equality constraint.

TINFY Total degree of uncertainty.

INFY Total feasibility uncertainty degree of a box.

A Interval matrix.

IR Set of reals.

II Set of Interval.

II
n
 n-dimensional interval (box).

w (X) Width of an interval X.

Hull (X) Hull of an interval X.

r (X) Radius of an interval X.

m (X) Midpoint of an interval X.

〈X〉 Mignitude of an interval X.

 xii

|X| Magnitude of an interval X.

 Arithmetic operations (+, −, ×, ÷)

CLB Current Lower Bound.

FE Number of function calls.

GE Number of Gradient calls.

x* Location of global optimum.

WLB Working list / pending list of Boxes.

δ Tolerance for final interval length.

φ Empty set.

Dk Parent sub-expression at tree level k.

Lk+1 and Rk+1 Immediate Left and Right sub-expressions of Dk at tree level k+1.

STU Standard time units.

D Dimension of the problem.

NE Number of nonlinear equations.

LE Number of linear equations.

NIE Number of nonlinear inequalities.

LIE Number of linear inequalities.

IP Interval partitioning algorithms

 1

Chapter 1

Introduction

1.1. Background

Despite the advanced computer support we have at hand, optimization problems are

still challenging for researchers working in computing sciences, mathematics and

operations research fields. Limited success has been achieved in classifying and

identifying global optima in nonlinear and discrete optimization systems. Often, the

number of local optima in these problems is large; therefore, the standard nonlinear

programming methods may fail to locate the global optimum. On the other hand, a

numerical and exhaustive algorithm suffers from slow convergence when the feasible

region defined by the given system of equations is not convex or covers a large space.

Identifying the global optimum of a given system in a relatively fast and efficient way

is very important both for engineering community and academics.

In engineering, economics and other scientific studies, quantitative decisions are

frequently modeled by applying optimization concepts and tools. The decision maker

or modeler typically wants to find the “absolutely best" decision, which corresponds

to the maximum (or minimum) of a given objective function, while it satisfies a

collection of feasibility constraints. The objective function expresses overall

(modeled) system performance, such as profit, utility, loss, risk, or error. Constraints

originate from physical, technical, economic or possibly some other considerations.

In the case of a possibly quite complex nonlinear system description, the associated

decision model may – and frequently will - have multiple local optimal solutions. In

most realistic cases, the number of such local solutions is not known a priori, and the

 2

quality of local and global solutions may differ substantially. Sometimes the only

information available is given computationally, i.e., only the function value is

available, the derivative is either not available or is very expensive to compute.

Therefore, these decision models can be very difficult, and standard optimization

strategies may not be directly applicable to solve them. Hence, one needs to rely on

other reliable global optimization (GO) concepts and techniques.

1.2. Categories of Global Optimization Problems

Global Optimization (GO) can be defined as the task of finding the absolutely best set

of parameters to optimize an objective function. In general, there can be solutions that

are locally optimal only but not globally optimal. Consequently, global optimization

problems are typically quite difficult to solve analytically; in the context of

combinatorial problems, they are often NP-hard. Global optimization problems fall

within the broader class of Nonlinear Programming Problems (NLP).

A constrained optimization problem (COP) is defined by an objective function,

f(x1,…,xn) to be maximized over a set of variables, V={ x1,…,xn }, with finite

continuous domains for each variable xi, i =1,…,n, the domain is defined as:

Xi = {xi : a ≤ xi ≤ b}, where a, b ∈ IR that are restricted by a set of constraints,

C={ c1,…,cp } where p = k + m and k, m are number of inequality and equality

constraints respectively.

Constraints in C are linear or nonlinear equations or inequalities that are represented

as in equation (1.1):

gi(x1,…, xn) ≤ 0, ∀i =1,…, k.

hj(x1,…, xn) = 0, ∀ j =1,…, m.

(1.1)

 3

An optimal solution of a COP is an element (x*) of the search space

X (X = X1×…×Xn), that meets all the constraints, and whose objective function value,

f(x*) ≥ f(x) for all consistent elements x∈ X.

The generic COP model can be represented as:

Objective function: maximize ƒ(x)

Subject to a set of constraints:

gi (x) ≤ 0, ∀ i = 1,…, k (Inequality constraints)

hj (x) = 0, ∀ j = 1,…, m (Equality constraints)

Search region (box): x ∈X ⊆ IR n

ƒ(x): X ⊆ IR n→ IR, is the objective function, and can be convex or non-convex and

linear or nonlinear functions.

The constraints can be of convex or non-convex type restricting over the domain X.

The COP is a Bound Constrained Optimization Problem (BCOP), if the constraints

gi(x) and hj(x) are absent.

The COP is a Continuous Constraint Satisfaction Problem (CCSP), if objective

function ƒ(x) is absent.

The basic concepts of neighborhood, feasible point, local maximum, and global

maximum are defined as follows (Wah and Wang 1999):

Definition 1.1.)(xN , the neighborhood of point x in variable space X, is user

defined set of points {x′ ∈X} such that x∉)(xN and that)()(xNxxNx ′∈⇔∈′ .

Neighborhoods must be defined such that any point in the finite search space is

reachable from any point through traversals of neighboring points.

(1.2)

 4

Definition 1.2. Point x ∈ X is called a feasible point for equation (1.1), if x satisfies

all the constraints, i.e., gi(x) ≤ 0 ∀ i =1,…,k and hj(x) = 0 ∀ j = 1,…, m.

Definition 1.3. A local maximum for equation (1.2), is defined as a point x′ such that

f(x′) ≥ f(x) ∀ x ∈ X ∩ Nε(x′). Here ε > 0 and Nε(x′) is an ε -neighborhood around x′

defined by Nε(x′) = {x | ||x − x′|| <ε}.

Definition 1.4. Point x* ∈ X is called a global maximum for equation (1.2), iff a) x*

is a feasible point, and b) for every feasible point x ∈ X ⊆ IR n, f(x*) ≥ f(x).

Optimization techniques can be classified into two broad categories: local

optimization and global optimization methods used in different fields of research.

Efficient local optimization methods exist in the literature. It is harder to develop

efficient Global Optimization methods.

1.3. Global Optimization Methods

The global optimization methods are broadly divided into deterministic and

probabilistic global optimization methods.

a. Deterministic Global Optimization Methods:

Many deterministic methods have been developed in the past. Some of them apply

deterministic heuristics, such as modifying the search trajectory in trajectory methods

and adding penalties in penalty-based methods, to bring a search out of a local

maximum. Other methods, such as branch-and-bound and interval methods partition a

search space recursively into smaller subspaces and exclude regions containing no

optimal solution. These methods do not work well when the search space is too large

for deterministic methods to cover adequately.

Deterministic global optimization methods include covering methods, such as

interval-based method, which are branch and bound method (Moore 1966, Ratschek

 5

and Rokne 1988, Neumaier 1990, Hansen 1992) and generalized descent methods.

Almost all the algorithms designed for solving constrained optimization problems and

continuous constraint satisfaction problems are derived from the bound constrained

optimization problems. However, there is a very limited amount of contribution made

in solving the COP.

Cleary (1987) first proposed interval constraints for solving continuous constraint

satisfaction problems. His approach associates propagation and search techniques

developed in artificial intelligence and interval analysis based methods. However,

Symbolic-Interval cooperation techniques are one of the most commonly used

techniques in solving CCSP. The symbolic part in the cooperation deals only with the

representation of the constraint expression and interval analysis computes the verified

enclosures of the solution sets (Granvilliers et al. 2001).

A very limited amount of research is carried out in Symbolic-Interval cooperation

approaches to handle non-polynomial CCSP problem (Granvilliers et al. 2001,

Granvilliers and Benhamou 2006). This motivates in solving CCSP of non-

polynomial type.

Covering methods (Evtushenko et al. 1992, Baritompa and Cutler 1994) are reliable

since, to the extent they work, they have built-in guarantees of solution quality.

However, they require some global properties of the optimization problem, such as

Lipschitz condition. In the worst case, covering methods take an exponential amount

of work. Many of the heuristic techniques used for searching global solutions can be

adapted to or combined with branch and bound approach to take advantage of

structural insights of specific applications.

 6

Generalized descent methods (Anderson and Walsh 1986, Schaffler and Warsitz

1990) continue the search trajectory every time a local solution is found. Their

problem is that as more local minima are found, the modified objective function

becomes more difficult to minimize.

b. Probabilistic Global Optimization Methods:

Probabilistic global optimization methods rely on probability to make decisions. The

simplest probabilistic algorithm uses restarts to bring a search out of a local maximum

when little improvement can be made locally. Advanced methods use more elaborate

techniques. Probabilistic global optimization methods are classified into clustering

methods (Törn 1973, Boender et al. 1982, Törn and Viitanen 1992), random search

methods such as single-start (Zabinsky and Smith 1992), multi-start (He and Polak

1993), random line search, adaptive random search, genetic algorithms, simulated

annealing, and methods based on stochastic models for example, Bayesian methods.

Genetic algorithms (Goldberg 1989, Michalewicz 1994) and simulated annealing

(Romeijn and Smith 1994) are the two popular stochastic global optimization

methods. Genetic algorithms make use of analogies to biological evolution by

allowing mutations and crossovers between candidates of good local optima in the

hope to derive even better ones. However, simulated annealing takes its intuition from

the fact that heating and slowly cooling (annealing) a piece of metal brings it into

more uniformly crystalline state, which is believed to be the state where the free

energy of bulk matter takes its global minimum.

More detailed review over the above solution approaches are available in Pardalos

and Rosen (1987), Ratschek and Rokne (1988), Torn and Zilinskas (1989), Neumaier

(1990), Floudas and Pardalos (1992), Horst and Pardalos (1995), Floudas and

 7

Pardalos (1996), Grossmann (1996), Pinter (1996), Horst et al. (2000), Horst and Tuy

(2003), Neumaier (2004), and so on.

1.4. Objective and Scope

The research objective of this thesis is to develop a reliable and generic approach that

can deal with the following global optimization (non-convex and nonlinear) problems

defined in equation (1.2):

 Bound constrained optimization problem (BCOP)

 Numeric / Continuous constraint satisfaction problem (CCSP)

 Constrained optimization problem (COP)

In BCOP, partitioning methods utilizing Interval Arithmetic are powerful techniques

that produce reliable results. Subdivision direction selection is a major component of

partitioning algorithms and it plays an important role in convergence speed. The

subdivision rules proposed up to date is based on criteria such as the width of variable

intervals (Rule A and D), or estimated function improvement by selected variables

(gradient information such as Rule B, C and E). The performance of such rules is

assessed extensively on standard test problems (Ratz and Csendes 1995, Csendes and

Ratz 1996, Csendes and Ratz 1997, Csendes et al. 2000) resulting in the general

conclusion that gradient based rules work much better.

Here, a new subdivision direction selection scheme is proposed that uses symbolic

computing in interpreting interval arithmetic operations. We call this approach

Interval Inference Rule (IIR). IIR targets the reduction of interval bounds of pending

boxes directly by identifying the major impact variables and re-partitioning them in

the next iteration. This approach speeds up the interval partitioning algorithms

because it targets the pending status of sibling boxes produced. The proposed IIR

 8

enables multi-section of two major impact variables at a time. Also, the new

subdivision does not need any form of gradient information for the selection of

subdivision directions. The efficiency of IIR is illustrated on well-known bound

constrained test functions and compared with established subdivision direction

selection methods from the literature.

In CCSP and COP, a cooperative solution methodology that integrates Interval

Partitioning algorithms (IP) with a local search, Feasible Sequential Quadratic

Programming (FSQP), is presented as a technique to enhance the solving of CCSP

and COP. FSQP is invoked using a special search tree management system developed

to increase search efficiency in finding feasible solutions and global optima of a

CCSP and COP respectively.

In this framework, a new symbolic method is introduced for selecting the subdivision

directions that targets immediate reduction of the uncertainty related to constraint

infeasibility in child boxes. This subdivision method is compared against two

previously established partitioning rules (also parallelized in a similar manner) used in

the interval literature and shown to improve the efficiency of IP. Further, the

proposed tree management system is compared with tree management approaches that

are classically used in IP. The whole method is compared with the published results

of established symbolic-numeric methods and other established software for solving

CCSP and COP on a number of state-of-the-art benchmarks respectively.

The scope of this research is to

 develop a general Interval Partitioning Approach with special tree

management techniques.

 integrate a new and efficient subdivision selection rule (IIR) that transforms

 9

function expressions into workable trees (binary tree) on which sub-expression

intervals can be numerically propagated to identify major impact variables for

re-partitioning.

1.5. Outline of the Thesis

The organization of thesis is follows: Chapter 2 outlines the detailed literature related

to this research, overview on Interval Arithmetic and the basic notation, and overview

and motivation behind selecting the Feasible Sequential Quadratic Programming

(FSQP) as the local search method. Chapter 3 briefly reviews the existing tree

management systems and the new proposed tree management used in solving CCSP

and COP. Chapter 4 first introduces the different subdivision direction selection

strategies. Then the details on the new subdivision selection strategy (Interval

Inference Rule (IIR)) and its convergence proof are presented. The performance of the

IIR over the existing approaches and software is illustrated in Chapter 5 with

numerical experiments. Some of the possible application problems and its numerical

results are presented in Chapter 6 in brief. Chapter 7 summarizes the work done in

this research and presents some possible extensions. The Appendices A, and B present

the detailed computational results for CCSP, and complete list of COP benchmarks,

respectively.

 10

Chapter 2

Literature Review

General nonlinear optimization problems are difficult to solve due to the large number

of local maxima in the search space. Good local maxima are difficult to be found by

the local search methods because they stop at every local maximum. Thus, to obtain

globally optimal solutions, global optimization techniques have been developed to

escape from local maxima once the search gets there, and continue the search process

further.

2.1. Pervious Work on Global Optimization

Due to the importance of optimal solutions for engineering, economics and social

sciences applications, numerous optimization methods have been developed. In the

recent decades, as computers have become more powerful, numerical optimization

algorithms have been developed for many applications.

Solution methods for nonlinear optimization problems can be classified into local and

global optimization methods. Local optimization methods such as gradient-descent

and Newton’s methods use local information (gradient or Hessian) to perform

descents and converge to a local optimum. They can find local optima efficiently and

work best in uni-modal problems. Global methods, in contrast, employ heuristic

strategies to look for global optima and do not stop after finding a local optimum

(Pardalos 1993). A taxonomy on global optimization methods can be found in

Pardalos and Rosen (1987), Törn and Zilinskas (1989), Floudas and Pardalos (1992),

Hansen (1992), Horst and Tuy (2003) and so on. It is noted that the gradients and

Hessians can be used in both local and global methods.

 11

2.1.1. Local Search Methods

Local optimization methods can be broadly classified into Zero-order methods, First-

order methods, and Second-order methods based on the derivative information used

during search (Shang 1997).

Zero-order methods do not use derivatives of objective functions during optimization.

They include simplex search method, the Hooke and Jeeves methods, the Rosenbrock

method, and conjugate direction method (Powell 1964, Nelder and Mead 1965,

Chazan and Miranker 1970, Dennis Jr. and Torczon 1991, Lewis et al. 2000).

First-order methods use first-order derivatives of the objective function during the

search. They include the gradient-descent method, the discrete Newton’s method, the

quasi-Newton methods, and conjugate gradient methods. The gradient-descent

method performs a linear search along the direction of the negative gradient of the

minimized function (Arminjo 1966, Wolfe 1967, Sturua and Zavriev 1991, Baldi

1995). The discrete Newton’s method approximates the Hessian matrix by the finite

difference of the gradient. Quasi-Newton methods approximate the curvature of the

nonlinear function using information of the function and its gradient only, and avoid

the explicit evaluation of the Hessian matrix (Broyden 1972, Bazaraa et al. 1993).

Conjugate gradient methods combine the current gradient with the gradients of

previous iterations and search direction to form the new search direction. They

generate search directions without storing a matrix (Hestenes 1980, Kinsella 1992,

Bazaraa et al. 1993).

Second-order methods make use of second-order derivatives. They include Newton’s

methods, Levenberg-Marquardt’s method, and trust region methods (Dennis and

Schnabel 1983, Bazaraa et al. 1993). In Newton’s method, the inverse of Hessian

 12

matrix multiplies the gradient, and a suitable search direction is found based on a

quadratic approximation of the function. Newton’s method converges quadratically if

the initial point is close to a local optimum. Levenberg-Marquardt’s method and trust

region methods are modifications of Newton’s method. However, line search or trust

region algorithms converge when their starting point is not close to an optimum. Line

search and trust region techniques are suitable if the number of variables is not too

large. Truncated Newton’s methods are more suitable for problems with a large

number of variables. They use iterative techniques to obtain a direction in a line

search or a step in a trust region method. The iteration is stopped when a termination

criterion is satisfied.

The sequential quadratic programming (SQP) algorithm is a generalization of

Newton's method for bound constrained optimization in that it finds a step away from

the current point by minimizing a quadratic model of the problem (Shanno and Phua

1989, Zhou and Tits 1996, Lawrence et al. 1997, Murray 1997, Lawrence and Tits

2001).

Local search methods converge to local optima. For some applications, local optima

may be good enough, particularly when the user provides a good starting point for

local optimization algorithms. However, for many applications, globally optimal or

near-optimal solutions are desired.

In a nonlinear optimization, objective functions are multimodal with many local

optima. Local search methods converge to local optima close to the initial points.

Therefore, the solution quality depends heavily on the initial point selected. When the

objective function is highly nonlinear, local search methods may return solutions

much worse than the global optima when starting from a random point.

 13

Some of the software codes developed using local search techniques are as follows:

GAMS / Conopt

Algorithms:

Steepest Descent, Quasi-Newton, Sequential Linear Programming, Sequential

Quadratic Programming using the new second order information. The SQP sub-

method uses Reduced Hessians (when there are few superbasics) or Conjugate

Gradients (when there are many superbasics) (Drud 1996).

GAMS / Minos

Algorithms:

GAMS / Minos solves linear programs using a reliable implementation of primal

simplex method (Dantzig 1963). However, it solves nonlinear programs using

reduced-gradient algorithm (Wolfe 1962, Wolfe 1967) combined with a quasi-Newton

algorithm (Murtagh and Saunders 1978).

GAMS/ Snopt

Algorithms:

GAMS / Snopt applies primal simplex method (Dantzig 1963) for linear programs. For

both linearly and nonlinearly constrained problems, GAMS / Snopt applies a sparse

sequential quadratic programming (SQP) method (Gill et al. 1997), using limited-

memory quasi-Newton approximations to the Hessian of the Lagrangian.

To overcome the deficiencies in local search methods, global optimization methods

have been developed with global search mechanisms. Global search methods use local

search methods to determine local maxima, and focus on bringing the search out of a

local maximum once it gets there.

 14

2.1.2. Global Search Methods

Global search algorithms are abundant in global optimization literature, for example,

findings of Pardalos and Rosen (1987), Horst and Pardalos (1995), Pinter (1996),

Horst et al. (2000), and Özdamar and Demirhan (2001) are important for reviews and

comparisons. These algorithms can be classified as deterministic or probabilistic

algorithms. Probabilistic methods evaluate the objective function at randomly

sampled points from the solution space. Deterministic methods, on the other hand,

involve no element of randomness.

Alternatively, global optimization algorithms can also be classified as reliable and

unreliable. Reliable methods guarantee solution quality while unreliable methods do

not. Probabilistic methods, including simulated annealing, clustering, and random

searching fall into the unreliable category. However, Unreliable methods usually have

the strength of efficiency and better performance in solving large-scale problems.

Deterministic methods can be further classified into covering methods, and

generalized descent methods. Probabilistic methods can also be further divided into

clustering methods, random search methods, and methods based on stochastic models.

1. Deterministic Methods

Numerous deterministic methods have been developed in the past. Some of them

apply deterministic heuristics, such as modifying the search trajectory in trajectory

methods and adding penalties in penalty-based methods, to bring a search out of a

local maximum. Other methods, like branch-and-bound and interval methods,

partition a search space recursively into smaller subspaces and exclude regions

containing no optimal solution. These methods do not work well when the search

space is too large for deterministic methods to cover adequately.

 15

a. Covering Methods

Covering methods detect sub regions not containing the global maximum, and

exclude them from further consideration. Covering methods provide guarantee of

solution quality, and approximate the global solution by iteratively using tighter

bounds (Evtushenko et al. 1992, Hansen 1992, Moore et al. 1992, Horst and Tuy

2003). Obtaining a solution with guaranteed accuracy implies an exhaustive search of

the solution space for the global maximum. Thus, these methods can be

computationally expensive; with a computation time that increases dramatically as the

problem size increases (Baritompa 1993, Baritompa and Cutler 1994).

Branch and bound methods is one of the best examples for covering method. They

evaluate upper bounds on the objective function of subspaces. They allow an

assessment of the quality of the local optima obtained. Combining with

computationally verifiable sufficient conditions for global optimality, they allow one

to actually prove global optimality of the best solution obtained.

Branch and bound methods can be further classified into algorithms based on interval

methods, algorithms based on certain prior assumptions on functions, such as

Lipschitz functions and other methods.

Interval Methods

Interval Partitioning Algorithms (IPA) use interval arithmetic (Moore 1966) to

produce reliable results for constrained and bound constrained optimization (Hansen

1992, Ratschek and Rokne 1995). Due to their reliability, interval applications take

place in a wide scope of scientific fields (Kearfott and Kreinovich 1996). In bound

constrained global optimization problems, IPA subdivides the given domain into

smaller subspaces (boxes) that are assessed according to their function range

 16

calculated by using an approximating inclusion function. Based on the function range

bounds and a known best solution that is updated during the search, some subspaces

are deleted reliably, because they cannot hold the global optimum solution (Pinter

1992, Hammer et al. 1993). Subdivision continues in remaining boxes so that the

location of the global optimum solution can be enclosed within a small box of a given

tolerance. The final report contains all such boxes in the given function domain.

Convergence rate of IPA depends on the use of accelerating devices such as

monotonicity and concavity tests that help in discarding boxes (Ratschek and Rokne

1988, Ratschek and Rokne 1995) and on the selection of subdivision direction

(variable whose domain is to be re-partitioned) (Moore 1966, Neumaier 1990, Hansen

1992, Ratz and Csendes 1995, Berner 1996, Csendes and Ratz 1996, Csendes and

Ratz 1997, Csendes et al. 2000). In IPA, the latter issue has a major impact on

convergence rate because reducing the domain size of a specific variable might

enhance the reduction in the overestimated function range of the sibling boxes to a

significant degree. Thereby, boxes that cannot be discarded due to their promising

overestimated upper bounds may become disposable in a few re-partitioning iterations

with a good subdivision direction selection strategy.

Subdivision rules proposed up to date are based on criteria such as the width of

variable intervals, for example, Rule A (Moore 1966, Ratschek and Rokne 1988, Ratz

and Csendes 1995, Berner 1996, Csendes and Ratz 1996, Ratz 1996, Csendes and

Ratz 1997, Csendes et al. 2000) and Rule D (Hammer et al. 1993, Ratz and Csendes

1995, Berner 1996, Csendes and Ratz 1996, Ratz 1996, Csendes and Ratz 1997,

Csendes et al. 2000), or estimated function improvement by selected variables that is

gradient information (Rule B (Hansen 1992, Ratz and Csendes 1995, Csendes and

Ratz 1996, Ratz 1996, Berner 1996, Csendes and Ratz 1997, Csendes et al. 2000),

 17

Rule C (Ratz and Csendes 1995, Berner 1996, Csendes and Ratz 1996, Ratz 1996,

Csendes and Ratz 1997, Csendes et al. 2000) and Rule E (Ratz and Csendes 1995,

Berner 1996, Csendes and Ratz 1996, Ratz 1996, Csendes and Ratz 1997, Csendes et

al. 2000). The performance of such rules is assessed extensively on standard test

problems (Ratz and Csendes 1995, Csendes and Ratz 1996, Csendes and Ratz 1997,

Csendes et al. 2000) resulting in the general conclusion that gradient based rules work

much better.

In Berner (1996), these rules are converted into parallel multi-section rules by taking

the first k number of variables from a list of variables sorted according to the rule

(called k-best strategy here). Multi-section (subdivision of some variables in parallel)

and multi-splitting (subdivision of a single variable’s width into s > 2 pieces)

approaches are proposed in Csallner et al. (2000a, 2000b). The latter studies

investigate the efficiency related to specific values of s with regard to each

subdivision rule. Casado et al. (2000) propose multi-section / multi-splitting hybrids

by subdividing intervals of all variables into two or more pieces (sn) in parallel. They

propose a parametric method that involves the comparison of a box assessment

criterion with given constants used in deciding which hybrid parallel scheme should

be used for a given box. In Casado et al. (2000) the authors use the box assessment

criterion as a box selection rule and utilize multi-section subdivision rules based on k-

best strategy found in Berner (1996).

Further, the direction selection rules are classified into priori direction selection rules

and posteriori selection rules. The rules based width of variable intervals and gradient

information is classified as the priori selection rules (Csendes et al. 2000). The rules

developed for understanding the functioning of these subdivision direction selections

 18

are called as posteriori selection rules such as Rule 1, Rule 2, Rule 3 and Rule 4

(Csendes et al. 2000).

Ratz (1994, 1997) investigates the impact of gap-treating and box-splitting techniques

on subdivision direction selection rules. The box splitting techniques can be divided

into Brute force interval splitting, Selective interval splitting, Selective interval

splitting with midpoint evaluation, Exploitation of single parameter occurrence,

Exploitation of partial N-monotonicity, and Generalized Splitting Algorithm (GSA)

(for an overview, see Lüthi and Lladó 2003).

Accelerating devices are introduced to speedup the convergence of IPA. The midpoint

test (Ratz 1992, Hammer et al. 1993), which evaluates the middle point of a box, is

used to discard the boxes whose upper bounds are less than the midpoint’s function

value. The monotonicity test assumes that the given function is continuously

differentiable (Ratschek and Rokne 1988, Vaidyanathan and Halwagi 1994, Ratschek

and Ratschek 1995, Markót 2003). The other accelerating device includes non-

convexity test and other discarding tests (Hansen 1980, Ratschek and Rokne 1988,

Vaidyanathan et al. 1994, Markót 2000, Fernandez and Pelegrin 2001, Markót et al.

2006). More detailed review over the above accelerating devices is available in

Ratschek and Rokne (1988), Vaidyanathan and Halwagi (1994), Ratschek and

Ratschek (1995), Markót (2003). The box can be abdicated when this test is satisfied.

However, this case is only true when dealing with bound constrained optimization.

For constrained optimization, this test alone is not sufficient to discard a box.

Moreover, the assumption of ‘continuously differentiable’ cannot always be met in

practice.

Convergence rate of IPA also depends on the order of boxes to be processed

(Ratschek and Rokne 1988, Csendes and Pinter 1993, Csallner and Csendes 1996,

 19

Csendes 2001). In interval methods, the order of boxes to be processed plays an

important role; there exist different strategies for selecting the next box to be

subdivided. Some strategies have been used in interval methods, such as the strategy

to select the best upper bound, i.e., Moore-Skelboe rule (Skelboe 1974, Ratschek and

Rokne 1988), the oldest interval from the list, i.e., Hansen rule (Hansen and Sengupta

1980, Hansen 1992) and so on. Moore-Skelboe rule ensures a quicker algorithm than

Hansen rule. Jansson (1994) studies the combination of oldest first and best first

selection strategy. Berner (1996) studied the influence of different strategies for

selecting the next box for subdivision in IPA. Csendes (2001), and Casado et al.

(2001a, 2001b) propose some more heuristic selection strategies, which utilize the

information of global optima in solving bound constrained optimization problems.

Termination criterion also plays an important role in IPA to obtain solutions, which

are close to the actual solutions. Kearfott and Walster (2000) introduce new

termination criteria, i.e., thickness stopping criterion, which can be used for global

optimization algorithms using interval analysis. The other stopping criterion is a

heuristic domain and range stopping criteria, which is used to determine the accuracy

tolerances (Moore 1966, Neumaier 1990, Hansen 1992, Ratscheck and Rokne 1995).

Theoretically, IPA has no difficulties in dealing with the COP; however, interval

research on the COP is relatively scarce when compared with bound constrained

optimization. Robinson (1973) uses interval arithmetic only to obtain bounds for the

solution of the COP, but does not attempt to find the global optimum. Hansen and

Sengupta (1980) first use IPA to solve the inequality COP. A detailed discussion on

interval techniques for the general COP with both inequality and equality constraints

is provided in Ratschek and Rokne (1988) and Hansen (1992), and some numerical

 20

results using these techniques have been published later (Wolfe 1994, Kearfott

1996a).

Conn et al. (1994) transform inequality constraints into a combination of equality

constraints and bound constraints and combine the latter with a procedure for

handling bound constraints with reduced gradients. Computational examination of

feasibility verification and the issue of obtaining rigorous upper bounds are discussed

in Kearfott (1996d) where the interval Newton method is used for this purpose. In

Hansen and Walster (1993), interval Newton methods are applied to the Fritz John

equations that are used to reduce the size of sub-spaces in the search domain without

bisection or other tessellation. Experiments that compare methods of handling bound

constraints and methods for normalizing Lagrange multipliers are conducted in

Kearfott (1996b). Dallwig et al. (1997) propose software for solving bound

constrained optimization and the COP (so called GLOPT). GLOPT uses a branch and

bound technique to split the problem recursively into subproblems that are either

eliminated or reduced in size. The authors also propose a new reduction technique for

boxes and novel techniques for generating feasible points. More recently, Kearfott

(2003) presents the GlobSol, which is IP software that is capable of solving bound

constrained optimization problems and the COP.

Markót (2003) developed a new IP for solving the COP with inequalities where new

adaptive multi-section rules and a box selection criterion are presented (Markót et al.

2006). Kearfott (2006) provides a discussion and empirical comparisons of linear

relaxations and alternate techniques in validated deterministic global optimization.

Empirical results show that linear relaxations are of significant value in validated

global optimization. Finally, in order to eliminate the subregion of the search spaces,

Kearfott (2005) proposes a simplified and improved technique for validation of

 21

feasible points in boxes, based on orthogonal decomposition of the normal space to

the constraints. In the COP with inequalities, a point, rather than a region, can be

used, and for the COP with both equalities and inequalities, the region lies in a

smaller-dimensional subspace, giving rise to sharper upper bounds. More detailed

review over the methods for constrained optimization is available in Ratschek and

Rokne (1988), Hansen (1992), Ratschek and Rokne (1995), Kearfott (1996c) and so

on.

For Continuous Constraint Satisfaction Problems:

CCSP’s are solved by discarding inconsistent elements of the search space (this

technique is known as a filtering technique). One of the main difficulties of filtering is

that parts of the search space can be discarded only by proving that they do not

contain any feasible solution. In particular, unlike when solving constrained

optimization problems, filtering for CCSP cannot take advantage of a bound on the

objective (Branch and Bound approach) upon a search space and discard it using this

bound. It is hard to tackle the general nonlinear CCSP with computer algebra systems.

In general, numeric algorithms cannot guarantee completeness (some solutions may

be missed) and reliability of the solution set (the search might result with an infeasible

response, despite the fact that a feasible solution exists). Neumaier et al. (2005)

compare the solver performance in terms of reliability, efficiency, and so on among

major complete/global and incomplete/local solvers using an extensive set of

constrained optimization problems and CCSP. As far as solving CCSP is concerned,

the reliability of interval-symbolic solver ICOS (Lebbah 2003) is praised, however,

with a note on its slow convergence. Results on these benchmarks are reported for the

identification of a first feasible solution, rather than all feasible solutions.

 22

Completeness and reliability can be achieved by using interval methods. Intervals

were first used (Moore 1966) to take rounding errors into account, guaranteeing thus

reliability. In addition to this, interval-based methods were proved to be complete

(Neumaier 1990, Hansen 1992, Ratschek and Rokne 1995). A drawback of interval

methods is the dependence of a function interval on the syntactical form of the

constraints /expressions. The latter affects the performance of the interval-based

methods. This problem of intervals is known as the dependency problem. Fortunately

enough, in some specific cases, it was shown that the input forms could be converted

into more manageable/solvable expressions by different methods (Buchberger 1985,

Rump 1992, Granvilliers 1998, Ceberio and Granvilliers 2002).

Interval techniques for the CCSP are basically Branch and Prune techniques where

branching consists in splitting the search space into smaller boxes, and pruning in

reducing the variables’ domains. Splitting consists in bisecting the domains of

selected variable(s) in a given search space (box), which results in child boxes.

Variable selection is made according to different heuristics, such as largest width first

(Rule A) or largest rate of change (product of absolute value of the corresponding

Jacobian element and width of the variable- Smear rule by Kearfott and Manuel

1990).

Precision test checks out the precision of the current box. The test succeeds if the

precision of the current box is smaller than or equal to an infinitesimally number ε

(ε > 0.0). The splitting step divides the current box along one dimension. The splitting

step can be performed using Rule A, Rule B, Rule C, Rule D, Smear Rule and so on

given in the above section.

 23

In the Branch and Prune approach, pruning test (or filtering) can be carried out in

three basic ways.

The first method is the simplest one and involves interval evaluation of each

constraint. If the interval of any constraint does not contain a root (namely, the zero),

the box is discarded. Convergence of this method is slow due to overestimation of

inclusion function ranges that leads to repetitive bisection of boxes.

The second method is the classical global pruning approach, the interval Newton

method (Moore 1966, Hansen 1992). Interval Newton is based on the iterative

Newton step involving the Jacobian matrix that represents interval rate of change of

all constraints in the system. Hence, it may be called a global filtering method.

Newton steps may result in variable domains that do not intersect with the box’s

domains (infeasible search space-to discard), it may narrow variable domains in a

given box, or, it might fail in case of multiple roots. Convergence rate to a sufficiently

small enclosure of the root is quadratic if a feasible solution exists in the given box.

The third and most important category of pruning approaches is that of local

consistency methods, which aim to narrow variable domains by using their functional

relationships in constraints, taking one constraint and one variable at a time. Such

methods remove parts of the search space of variables that are inconsistent with the

domains of other variables taking place in the same constraint. Once the domains of

all variables in a given constraint are screened for consistency, reduced domains are

substituted into other constraints sharing the variables whose domains have just been

reduced. These steps result in a constraint propagation algorithm (Jaulin et al. 2001).

The sequence in which constraints are handled in constraint propagation plays an

important part in the efficiency of the method (L’homme et al. 1998). Two major

types of consistency techniques exist, hull consistency and box consistency. Hull

 24

consistency (Cleary 1987, Benhamou et al. 1994, Benhamou and Older 1997) is

basically constraint inversion that uses relational interval arithmetic. Hull consistency

is applicable to simple constraints due to difficulties arising during the inversion of

complex expressions and also due to the dependency problem that takes place in the

case of multiple occurrences of the same variable in a constraint expression. The

dependency problem is partially eliminated by the box consistency technique

(Benhamou et al. 1994, Van-Hentenryck et al. 1997a) where consistency of gradually

expanding outermost sub-domains (starting from lower and upper bounds of domains)

is identified by an iterative method that checks constraint feasibility by interval

evaluation. When constraint propagation does not reduce a variable interval

substantially, the branching module bisects its domain and inserts the two new sub-

spaces (boxes) into the list of boxes waiting to be assessed for feasibility. Hull and

box consistency methods work in conjunction with each other and with interval

Newton method to improve overall efficiency. A comparison of consistency

techniques and cooperative strategies are found in Benhamou et al. (1999), and

Granvilliers (2001). The other consistency technique is higher order local consistency

(Freuder 1978, Sam-Haroud and Faltings 1996, Lebbah and Lhomme 2002) deriving

from k-consistency such as 3B Consistency, kB-Consistency (Lhomme 1993), and

box (2)-Consistency (Puget and Van Hentenryck 1998).

An extensive discussion on how symbolic-interval cooperation can be carried out by

appropriate constraint partitioning is given in Granvilliers et al. (2001). Most of the

research up to date is focused on constraint representation such as Horner Rule,

Factorization, Gröbner basis, and so on (Ceberio and Granvilliers 2002). These

symbolic-interval cooperation techniques use interval analysis for computing verified

enclosures of solution sets. Thus, research carried out till date is more promising to

 25

the polynomial functions then the non-polynomial functions. Developing a generic

approach for solving polynomial and non-polynomial functions is a worthwhile

contribution to this field of research.

Schichl and Neumaier (2005) propose a new technique for global optimization, which

is a combination of interval analysis on directed acyclic graph and constraint

propagation. Vu et al. (2004) propose a new simple algorithm, which coordinates

constraint propagation and exhaustive search for solving numerical constraint

satisfaction problems (Vu et al. 2003).

ALIAS and ICOS are software, which is capable of finding all feasible solutions for a

given CCSP. COPRIN project web page publishes results obtained through the usage

of ALIAS, a comprehensive set of libraries that include 2B/3B box and hull

consistency variants, linearization (Yamamura et al. 1998), interval Newton, and

unicity operators, and numerical and interval root approximations for univariate

polynomials (http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-

C++.html). ALIAS is an advanced C++ library of symbolic-interval algorithms that

deal with CCSP’s.

Several interval based software have been developed, and most of them being

referenced on the interval computations webpage (http://www.cs.utep.edu/interval-

comp/intsoft.html). Interval-based constraint satisfaction techniques have been

implemented in several constraint logic programming (CLP) systems, such as Eclipse

(Meier and Schimpf 1993), Oz (Smolka 1995), Mozart (Mozart Consortium 1999)

and Prolog IV (PrologIA 1996). Constraints are embedded into CLP programs, using

Horn clauses. The operational semantics based on term unification and constraints

solving techniques.

 26

Pascal Van Hentenryck and his colleagues developed Numerica (Van Hentenryck et

al. 1997a), which is the integration of constraint satisfaction techniques and interval

methods. However, Numerica is not currently available, but some of their constraints

solving functionalities have been implemented in the commercial object-oriented

library ILOG Solver (ILOG 2001). RealPaver (Granvilliers and Benhamou 2006) is a

C++ library for solving nonlinear systems of equations, implementing a fine-grained

algorithm based on constraint satisfaction techniques. On the COCONUT web page,

an extensive testing has been carried out for box-constrained and constrained

optimization problems in addition to CCSP’s. The solvers that are compared on the

CCSP problems include ALIAS, COCONUT, ICOS (Lebbah 2003) and QUAD (for

two problems reported).

More detailed review over the above solution approaches for CCSP is also available

in Schichl (2003), and Vu (2005).

Some of the software codes or platforms developed using local search techniques are

as follows:

1. COCONUT (Schichl 2003, Schichl 2004)

The COCONUT project (Schichl 2003, Schichl 2004) aims at the integration of

existing approaches to continuous global optimization and constraint satisfaction. The

solution algorithm is an advanced branch-and-bound scheme which proceeds by

working on the search graph, a directed acyclic graph of search nodes (Schichl and

Neumaier 2005), each representing an optimization problem, or a model. The several

state of the art techniques already provided are Donlp2 (Spellucci 2002), Box

covering solver (BCS), STOP (a heuristic starting point generator), Karush-John

Condition generator using symbolic differentiation, Point Verifier for verifying

 27

solution points, Exclusion Box generator, calculating an exclusion region around local

optima (Schichl and Neumaier 2004), Interval constraint propagation (Petrov and

Benhamou 2002), Linear Relaxation, CPLEX (a wrapper for the state of the art

commercial linear programming solver by ILOG

(http://www.ilog.com/products/cplex/)), Basic Splitter, and Convexity detection for

simple convexity analysis.

2. Realpaver (Granvilliers and Benhamou 2006)

The constraint solving engine of RealPaver implements a branch and prune algorithm.

Given a CCSP, a set of boxes that contain all the solutions of the CCSP is computed

through splitting and reducing each box. The reduction eliminates inconsistent values

from domains by means consistency techniques. The splitting step generates sub-

boxes in order to separate the solutions.

3. Numerica (Van Hentenryck et al. 1997a)

Branch and bound is algorithm for constrained optimization (with mathematically

rigorous results). This code (no longer available) was based on branching and box

reduction using interval analysis and constraint satisfaction techniques. The box

reduction and interval analysis algorithms of Numerica are now available in ILOG

Solver.

4. GlobSol (http://interval.louisiana.edu/GlobSol/download_GlobSol.html, Kearfott

2003)

This is a Branch and bound code for global optimization with general factorable

constraints, with rigorously guaranteed results (even round off is accounted for

correctly). GlobSol is based on branching and box reduction using interval analysis to

verify that a global maximizer cannot be lost.

 28

5. Globopt (Dallwig et al. 1997)

Globopt is a Fortran77 program for global minimization of a block separable

objective function subject to bound constraints and block-separable constraints.

Globopt uses a branch and bound technique to split the problem recursively into

subproblems that are either eliminated or reduced in their size.

6. ALIAS (http://www-sop.inria.fr/coprin/)

ALIAS is a software based on interval analysis and can be used for almost any system

as long as it is composed of classical mathematical operators. Some algorithms may

be used only for systems with specific structure such as algebraic, linear, distance,

systems and so on. ALIAS may also deal with functions that involve determinants of

matrices, without having to expand the determinants. This is mainly developed for

solving constraint satisfaction problems.

7. ICOS (http://www-sop.inria.fr/coprin/ylebbah/icos/index.html, Lebbah et al. 2003)

ICOS (Interval COnstraints Solver) is a software package for solving nonlinear and

continuous constraints. It is based on constraint programming and interval analysis

techniques. This is mainly developed for solving constraint satisfaction problems and

can find all the solutions for a given CCSP model.

8. Unicalc (http://www.rriai.org.ru/UniCalc/)

This is a solver based on interval constraint propagation. It allows tackling nonlinear

algebraic systems with real and/or integer variables.

 29

9. ParaGlobSol (http://happy.dt.uh.edu/~sun/ParaGlobSol.html)

Parallel/distributed implementations of the interval global optimization Fortran 90

package GlobSol, which solve global optimization problems with the interval branch-

and-bound algorithm together with interval Newton/generalized bisection method.

Various software packages developed to support interval arithmetic are:

1. Profil / Bias (Knuppel 1994)

http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

PROFIL (Programmer's Runtime Optimized Fast Interval Library) is a C++ class

library supporting the most commonly needed interval and real operations in a user

friendly way. PROFIL is based on Basic Interval Arithmetic Subroutines (BIAS). The

development of BIAS was guided by the ideas of Basic Linear Algebra Subprograms

(BLAS), to provide an interface for basic vector and matrix operations with specific

and fast implementations on various machines, the latter is frequently provided by the

manufacturers. The idea of BIAS is to give such an interface for interval operations

with the objective, very efficient use of the underlying hardware, portability,

independency of a specific interval representation.

2. C-XSC (Klatte et al. 1993)

http://www.rz.uni-karlsruhe.de/~iam/html/language/cxsc/cxsc.html

C-XSC is a tool for the development of numerical algorithms delivering highly

accurate and automatically verified results. It provides a large number of predefined

numerical data types and operators. These types are implemented as C++ classes.

Thus, C-XSC allows high-level programming of numerical applications in C and C++.

 30

Lipschitz Methods

Lipschitz methods solve global optimization problems in which the objective function

and constraints are given explicitly and have bound slopes. The algorithm partitions

feasible space into sub-spaces and conducts assessment for re-partitioning relying on

assumed knowledge about the rate of change of the function, or the so-called

Lipschitz constant (Gourdin et al. 1994, Hansen et al. 1995, Horst and Tuy 2003,

Pinter 1988). In Lipschitz approach, functions are assumed to be continuous and

smooth with finite slopes around stationary points. Lipschitzian methods guarantee

convergence to the global optimum only if Lipschitz constant utilized in

approximating the function is not underestimated. Heuristic estimations of the

Lipschitz generation are found in Strongin (1978), Meewella and Mayne (1989), and

Baritompa (1993) whereas exact approaches require the generation of a refined mesh

to obtain an appropriate Lipschitz constant. It is known that a high degree of

overestimation in Lipschitz constant results in a very slow convergence rate.

Obviously, function properties should be known to utilize Lipschitzian approaches,

and therefore, the problem cannot be considered as black box.

However, there exist other Lipschitzian approaches that eliminate the necessity of

specifying the Lipschitz constant whether or not it is estimated or calculated. The

latter are classified as black box optimization techniques. An example is DIRECT

(Jones et al. 1993) where the Lipschitz constant is taken as a weighting parameter that

balances global and local search. Parallel partitioning is conducted on boxes that are

non-dominated with respect to the two criteria, the first being the box size

(representing unexplored areas – a global search feature) and the second being the box

value (representing function fitness – a local search feature). Efforts are made to

enhance the computational complexity of DIRECT by using massive parallelism

 31

(Watson and Baker 2000). He et al. (2002) propose modifications that involve

termination and box selection criteria. A limitation of DIRECT is that it requires

surface smoothness property for convergence.

Huyer and Neumaier (1999) propose another black box partitioning approach called

Multilevel Coordinate Search (MCS). MCS performs non-uniform partitioning by

introducing a partition bias that divides boxes in the vicinity of samples having better

function values. Similar to DIRECT, MCS also requires a smooth and continuous

surface in the close neighborhood of the global optimum.

Pinter (1996) proposes a new powerful algorithm that integrates deterministic and

probabilistic global and local search within a global partitioning framework. This

algorithm is used in Lipschitz (-Continuous) Global Optimizer (LGO) development,

which is a commercial package for solving global optimization problems (Pinter

1996, 1997).

Other Methods

The other deterministic approaches including branch and bound methods are Al-

Khayyal and Sherali (2000), cutting plane methods (Tuy et al. 1985), outer

approximation (Horst et al. 1992), primal–dual method (Floudas and Visweswaran

1993, Ben-Tal et al. 1994), alpha-Branch and Bound approach (Androulakis et al.

1995), reformulation techniques (Sherali and Tuncbilek 1992, Smith and Pandelides

1999, Sherali and Wang 2001), interior point methods (Morales et al. 2001, Forsgren

et al. 2002, Leyffer et al. 2004, Leyffer 2005) and interval methods (Hansen 1992).

Branch and Bound techniques (B&B) are partitioning algorithms that are complete

and reliable in the sense that they explore the whole feasible domain and discard sub-

spaces in the feasible domain only if they are guaranteed to exclude feasible solutions

 32

and/or local stationary points better than the ones already found. B&B are exhaustive

algorithms that typically rely on generating lower and upper bounds for boxes in the

search tree, where tighter bounds result in early pruning of nodes. For expediting

B&B, feasibility and optimality based variable range reduction techniques (Ryoo and

Sahinidis 1995, 1996), convexification (Tawarmalani and Sahinidis 2002,

Tawarmalani and Sahinidis 2004), outer approximation (Burkard et al. 1992) and

constraint programming techniques in pre- and post-processing phases of branching

have been developed (Ryoo and Sahinidis 1996). The latter resulted in an advanced

methodology and software called Branch and Reduce algorithm (Baron, Sahinidis

1996, Sahinidis 2003).

Symbolic reformulations / spatial branch-and-bound algorithm, which is another

variant of B&B for nonconvex optimization problems, is developed with bounds

tightening, optimization based tightening, and feasibility based tightening tests to

obtain tighter bounds (Sherali and Tuncbilek 1992, Smith and Pantelides 1996, 1999,

Smith 1996, Sherali and Wang 2001).

Surveys on global optimization are abundant in the literature (Pardalos and Romeijn

2002).

Some branching codes using Function Values only:

The codes listed use black box function evaluation routines, and have heuristic

stopping rules.

i. DIRECT, Divide Rectangles (in Fortran, by Gablonsky and Kelley 2001,

Gablonsky 2001)

gblSolve, a MATLAB 5 implementation of DIRECT

 33

DIRECT method uses branching and a Pareto principle for the box selection. Jones et

al. (1993) implement a simple and efficient global optimization method for bound

constrained problems using DIRECT method.

ii. MCS, Multilevel Coordinate Search (Huyer and Neumaier 1999)

MCS is a branching and sequential quadratic programming algorithm, which can be

developed using Matlab. However, for a bound constrained global optimization

problem it uses function values only.

iii. LGO, Lipschitz Global Optimization (Pinter 1997)

This is an integrated development environment for global optimization with Lipschtiz

continuous objective and constraints. LGO is based on branching and estimation of

Lipschitz constants and interior convex constraints by projection penalties.

Some Branch and Bound Codes for Continuous Global Optimization:

The codes listed below use global information generally from required symbolic

problem input. They have finite termination with guarantee that the global maximizer

is found; in difficult cases storage or time limits may be exceeded, however, leading

to appropriate error messages.

i. GAMS / Baron (Ryoo and Sahinidis 1996, Sahinidis 1996)

Baron is a general purpose solver for global optimization problems with nonlinear

constraints and / or integer variables. It is one of the fast specialized solvers for many

linearly constrained problems. Baron is based on branching and box reduction using

convex relaxation and Lagrange multiplier techniques.

 34

ii. αBB (Adjiman et al. 1998a, 1998b, Androulakis et al. 1995, Adjiman and Floudas

2001)

αBB is a branch and bound code for nonlinear programs. It is based on branching and

bound by convex underestimation, using interval analysis to write nonlinearities in

DC (difference of convex function) form.

b. Generalized Descent Methods

These methods continue the search trajectory every time a local solution is found.

There are two approaches. First, trajectory methods modify the differential equations

describing the local-descent trajectory so that they can escape from local maxima

(Anderson and Walsh 1986, Snyman and Fatti 1987, Diener and Schaback 1990,

Schaffler and Warsitz 1990, Sturua and Zavriev 1991, Vincent et al. 1992). Their

advantage is the large number of function evaluations spent in unpromising regions.

Second, penalty methods prevent multiple determinations of the same local maxima

by modifying the objective function, namely, by introducing a penalty term on each

local maximum (Ge and Qin 1987, Cetin et al. 1993). Their problem is that as more

local maxima are found, the modified objective function becomes more difficult to

minimize. In existing generalized descent methods, the descent trajectory is modified

using internal function information, e.g., local maxima along the search.

Alternatively, deterministic methods can be classified into two categories (Shang

1997): (a) point-based methods, methods that compute function values at sampled

points, such as generalized descent methods, and (b) region based methods, methods

that compute function bounds over compact sets, such as covering methods. Point-

based methods are unreliable, but usually have less computational complexity.

 35

Region-based methods are expensive, but can produce rigorous global optimization

solutions when they are applicable.

2. Probabilistic Methods

Probabilistic global maximization methods rely on probability to make decisions. The

simplest probabilistic algorithm uses restart to bring a search out of a local maxima

when little improvement can be made locally. Advanced methods use more elaborate

techniques. The probabilistic methods are classified into clustering methods, random-

search methods and methods based on stochastic models (Shang 1997).

a. Clustering Methods

Clustering analysis (Törn 1977, Boender et al. 1982, Törn and Viitanen 1992) is used

to prevent the re-determination of already known maxima. There are two strategies

for grouping points around a local maximum: (i) retain only points with relatively low

function values (Beckernad and Lago 1970, Törn 1973); (ii) push each point toward a

local maximum by performing a few steps of a local search (Schoen 1991, Törn et al.

1999). They do not work well when the function terrain is very rugged or when the

search gets trapped in a deep but suboptimal valley (Zabinsky and Smith 1992).

b. Random Search Methods

These include pure random search, single-start (Sarma 1990, Schoen 1991, Spaans

and Luus 1992, Törn et al. 1999), multi-start (Goldberg 1989, Michalewicz 1994),

random line search, adaptive random search, partitioning subsets, replacing the worst

point, evolutionary algorithms (Kirkpatrick et al. 1983, Aarts and Korst 1989), and

simulated annealing.

Simulated annealing (Kirkpatrick et al. 1983) and genetic algorithms (Michalewicz

1994) are two popular stochastic global optimization methods. Simulated annealing

 36

(SA) takes its intuition from the fact that heating and slowly cooling (annealing) a

piece of metal brings it into a more uniformly crystalline state, which is believed to be

the state where the free energy of bulk matter takes its global maximum. The role of

temperature is to allow the configurations to reach energy states with a probability

given by Boltzmann’s exponential law, so that they can overcome energy barriers that

would otherwise force them into local maxima. Simulated annealing is provably

convergent asymptotically in a probabilistic sense, but may be exceedingly slow.

Various ad hoc enhancements make it much faster. Simulated annealing has been

successfully applied to solve many nonlinear optimization problems (Ingber 1994).

Özdamar and Demirhan (2000, 2001) provide extensive computational surveys

reflecting the performance of both types of approaches (deterministic adaptive

partitioning approaches and probabilistic approaches including many SA versions and

clustering methods) where a large number of test functions are used. The authors

reach the following empirical conclusion: SA (SA with local search (Özdamar and

Demirhan 2000), and Adaptive SA (ASA, Ingber 1996) and the fuzzy adaptive

partitioning scheme (Özdamar and Demirhan 2001) are the best performing ones

among the tested algorithms. However, when the number of variables increase (above

ten), the performance of both ASA and the fuzzy partitioning scheme deteriorate

considerably and the SA with local search scheme becomes best performing. Yet, the

results of the best approach are far from satisfactory.

The performance of SA depends on the number of variables of the function under

investigation, because, as a single point search technique, SA converges rather slowly

in order to provide sufficient moves carried out in every direction (variable). Dekkers

and Aarts (1991) provided a convergence proof for SA in the real domain. Various SA

implementations exist in the literature (Corana et al. 1987, Ingberg 1994, Zacharias et

 37

al. 1998). The strong points of SA and some pitfalls for potential SA users are

indicated in an extensive review given by Ingber (1994) where a wide range of

application areas from finance to combat analysis are described.

Genetic algorithms make use of analogies to biological evolution by allowing

mutations and crossovers between candidates of good local optima in the hope to

derive even better ones. At each stage, a whole population of configurations is stored.

Mutations are performed as local search, whereas crossover operators provide the

ability to leave regions of attraction of local maximizers. With high probability, the

crossover rules produce offspring’s of similar or even better fitness. The effect of

interchanging coordinates is beneficial mainly when these coordinates have a nearly

independent influence on the fitness, whereas if their influence is highly correlated,

such as for functions with deep and narrow valleys not parallel to the coordinate axes,

genetic algorithms have more difficulties. Successful tuning of genetic algorithms

requires a considerable amount of insight into the nature of the problem at hand.

Genetic algorithms have shown promising results in solving nonlinear optimization

problems (Glover 1980, Le Grand and Merz 1993, Michalewicz 1994).

Random search methods are easy to understand and simple to realize. The simplest

random algorithm uses restarts to bring a search out of a local maximum. Others, such

as simulated annealing, rely on probability to indicate whether a search should ascend

from a local maximum. Other stochastic methods rely on probability to decide which

intermediate points to interpolate as new starting points, like in random

recombinations and mutations in genetic algorithms. These algorithms are weak in

either their local or their global search. For instance, gradient information useful in

local search is not used well in simulated annealing and genetic algorithms. In

contrast, gradient-descent algorithms with multi-starts are weak in global search.

 38

These methods perform well for some applications. However, they usually have many

problem-specific parameters, leading to low efficiency when improperly applied

(Betro and Schoen 1987, 1992, Boender and Rinnooy kan 1987, 1991).

c. Methods Based on Stochastic Models

Most of these methods use random variables to model unknown values of an objective

function. One example is the Bayesian method, which is based on a stochastic

function and minimizes the expected deviation of the estimate from the real global

maximum (Mockus 1989, Zilinskas 1992, Mockus 1994). Bayesian methods do not

work well because most of the samples they collect randomly from the error surface

are close to the average error value, and these samples are inadequate to model the

behavior at maximal points. Other methods based on stochastic models include

methods that approximate the level sets. Although very attractive theoretically, this

class of methods are too expensive to be applied to problems with more than twenty

variables (Törn and Zilinskas 1989).

2.2. Interval Arithmetic

This section mainly deals with the foundations of interval arithmetic, the notation

used, concept of inclusion functions, interval methods for uncertainty and some

implementation examples for interval arithmetic. More detailed review over the

interval arithmetic is available in Moore (1966), Alefeld and Herzberger (1983),

Ratschek and Rokne (1988), Neumaier (1990), Hansen (1992), Ratschek and Rokne

(1995), Kearfott (1996c), Neumaier (2004), and so on.

2.2.1. Foundations

Moore (1966) introduced the Interval arithmetic in the late 1960s to deal with

infiniteness, to model uncertainty, and to tackle rounding errors of numerical

 39

computation. Interval analysis is a set of algorithms that have been extended from

numerical analysis to intervals, such as solving linear or nonlinear systems,

differentiation or integration. Given a problem over the real numbers, interval

computations are said to be reliable (verified) since no solution is lost (Granvilliers

2004).

Interval arithmetic is an elegant tool for practical work with inequalities, approximate

numbers, error bounds, and more generally with certain convex and bounded sets.

Moreover, it can also be used for solving bound constrained optimization, constraint

satisfaction problem, and constrained optimization problems.

2.2.2. Basics of Interval Arithmetic and Terminology

Definition 2.1: Interval arithmetic (IA) is an arithmetic defined on convex sets of real

numbers, called intervals. (Moore 1966, Alefeld and Herzberger 1983, Kearfott

1996a) ■

The set of intervals is denoted by II: ={[a, b] | a ≤ b, a, b ∈ IR.

Note that, in order to represent the real line with closed sets, II is made compact in the

obvious way with the infinities {-∞, +∞}. The usual conventions apply: (+∞) + (+∞)

= +∞, and so on. Every interval X ∈ II is denoted by [X , X], where its bounds are

defined by X = inf X and X = sup X.

For every a∈ II, the interval point [a, a] is also denoted by a.

Some important notions are as follows:

• Given a subset ρ of IR, the convex hull of ρ is the interval Hull (ρ) = [inf ρ, sup ρ].

 40

• The width of an interval X is the real number, and defined as w (X) = X - X .

Example : The width of interval X = [2, 3] is defined as w (X) = 3 – 2 =1.

• Given two real intervals X and Y, X is said to be tighter than Y if w (X) ≤ w (Y).

• The radius of an interval X is defined as r (X) = 0.5*w (X) = 0.5*(X - X).

• The midpoint of an interval X is defined as m (X) = 0.5*(X + X).

• The mignitude of an interval X is the number 〈X〉 = min x∈X | x |.

• The magnitude of an interval X is the number |X| = max {| X |, | X |}.

Elements of II
 n

 also define boxes. Given Xi ∈ II, i = 1, 2,…, n, the corresponding box

X is the Cartesian product of intervals, X = X1 × … ×Xn, where X ∈ II
 n

. A subset of

X, Y ⊆X, is a sub-box of X. The notion of width is defined as follows in equation

(2.1):

w(X1 × … × Xn) = max 1≤i≤n w(Xi) (2.1)

Interval Arithmetic operations are set theoretic extensions of the corresponding real

operations as defined in equation (2.2). Given X, Y∈ II, and an operation ∈ {+, −,

×, ÷}, we have:

X Y=Hull X Y, where (x, y) ∈ X ×Y. (2.2)

For all X, Y ∈ II and X = [X , X] and Y = [Y , Y] it holds that

 41

Addition rule:

X + Y =[X + Y , X + Y]

Subtraction rule:

X – Y = [X – Y , X – Y]

Multiplication rule:

X × Y = [min(X Y , X Y , X Y , X Y), max(X Y , X Y , X Y , X Y)]

Division rule:

1 ÷ Y = [1/ Y , 1/ Y]

X ÷ Y = X × 1/Y if 0 ∉ Y

nth Power rule :

 [1, 1] if n = 0

 [X
n
, X

 n
] if X ≥ 0 or X ≤ 0 ≤X and n is odd

Xn = [X
 n
, X

n
] if X ≤ 0

 [0, max(Xn , X
n

)] if X ≤ 0 ≤X and n is even for n = 0, 2, 4, 6, ……

Due to properties of monotonicity, these operations can be implemented by real

computations over the bounds of intervals. Given two intervals X = [a, b] and Y = [c,

d], we have for instance: X + Y = [a+c, b+d]. The associative and the commutative

laws are preserved over II. However, the distributive law does not hold. In general,

only a weaker law is verified, called semi-distributivity.

2.2.3. Extended Interval Arithmetic

In the above rules of interval arithmetic, division by an interval containing zero is

excluded. But it is often useful to remove this restriction. The resulting arithmetic is

(2.3)

 42

called extended interval arithmetic. The arithmetic was first discussed (independently)

by Hansen (1968) and Kahan (1968).

The rule for extended interval arithmetic must also satisfy associative and the

commutative laws defined in equation (2.3). This condition gives rise to a set of rules

extending to those in the section 2.2.2.

Popova (1996) investigates the algorithmic aspects for implementation of interval

arithmetic involving NaN's or signed zero and developed a simple model for the

interval arithmetic exceptions and their handling in IEEE non-trapping mode.

Verdonk et al. (2002) propose a set based representation of non-real to remove the

restrictions (for example: divisible by zero, interval domains containing points outside

the domain of the underlying functions) on the domain of interval functions and to

guarantee the inclusion property in all situations for 100% reliability of interval

arithmetic.

Hyvönen (2001) investigates the conceptual and practical difficulties of the end users

to interface with intervals. Further, Popova (2001) summarizes the distributive

relations on multiplication and addition of generalized intervals.

Kearfott et al. (2002) propose a new standard notation for the interval arithmetic and

to standardize the notation used for interval analysis.

For all X, Y ∈ II, and X = [X , X] and Y = [Y , Y] it holds that

 43

If 0 ∈ Y, then

 X [1/ Y , 1/ Y] if 0 ∉ Y

[–∞, ∞] if 0 ∈ X and 0 ∈ Y

[X / Y , ∞] if X < 0 and Y < Y = 0

[–∞, X / Y] ∪ [X / Y , ∞] if X < 0 and Y < 0 < Y

X
Y

 = [–∞, X / Y] if X < 0 and 0 = Y < Y

[–∞, X / Y] if 0 < X and Y < Y = 0

[–∞, X / Y] ∪ [X / Y , ∞] if 0 < X and Y < 0 < Y

[X / Y , ∞] if X < 0 and 0 = Y < Y

Ø if 0 ∈ X and 0 = Y

2.2.4. The Dependency Problem

Suppose, the interval X = [a, b] subtracts from itself.

Apply the subtraction rule defined in equation (2.3), the result obtained is

X – X = [a, b] – [a, b] = [a-b, b-a] (2.5)

We might expect to obtain [0, 0]. However, we do not (unless b=a). The result is {x–

y: x ∈ X, y ∈ x} instead of {x–x : x ∈ X}.

In general, when a given variable occurs more than once in an interval computation, it

is treated as a different variable in each occurrence. Thus, X – X is the same as X – Y

with Y equal to but independent of X. This causes widening of computed intervals

(2.4)

 44

and makes it more difficult to obtain sharp results in calculations. One should always

be aware of this consideration and take appropriate steps to reduce its effect.

The nth Power rule defined as above is used to overcome the dependency problem in

multiplication. For example, for n = 2, the definition is equivalent to equation (2.6)

X2 = {x2 : x ∈ X} (2.6)

rather than,

X × X = {x* y: x ∈ X, y ∈ X} (2.7)

If a particular interval variable occurs only once in a given form of a function, then it

cannot give rise to dependency. Thus dependency can occur in evaluating a function

f (X,Y) of the form (X - Y)/(X + Y), but not if it is rewritten as 1-2/(1 + X/Y).

If we evaluate f (X, Y) in the latter form, the resulting interval is the exact range of f

(x, y) for x ∈ X and y ∈ Y.

Overestimation for a function can be defined as the difference between actual and the

exact bounds of a function. This is mainly due to the dependency problem. Neumaier

(1982) and Stahl (1997) propose a technique for finding the overestimation and its

bounds in computing the function values.

Various methods were proposed to handle dependency problems such as Gröbner

basis (Buchbeger 1985), factorizations (Ceberio and Granvilliers 2002), substitution,

and so on.

2.2.5. Interval Arithmetic Properties

Theorem 2.1 (Algebraic Properties) (Hansen 1992)

For all X, Y, and Z ∈ II.

 Associativity : (X + Y) + Z = X + (Y + Z) and (XY) Z = X(YZ)

 45

 Commutativity : (X + Y) = (Y + X), XY = YX

 Neutral Element : (0 + X) = X, 1*X = X*1

However, proper intervals do not have additive or multiplicative inverses. Further, the

distributivity law does not hold for intervals. Instead, there is a weaker version of the

same given as follows:

Theorem 2.2 (Subdistributivity) (Hansen 1992)

Interval arithmetic is subdistributive in the sense that, if X, Y, and Z are intervals,

then

X(Y + Z) ⊆ XY + XZ

Thus, although addition or multiplication of intervals is commutative and associative,

the distributive laws do not hold. Furthermore, although there is an additive identity

[1, 1], additive and multiplicative inverses do not exist.

2.2.6. Inclusion Functions

Interval arithmetic is particularly appropriate to represent outer approximations of real

quantities. The range of a real function f over a domain D, denoted by F(D), can be

computed by interval extensions.

Definition 2.2 (Interval Extension): An interval extension of a real function

f : Df ⊂ IR n → IR is a function ϑ: IRn → IR such that

∀ X ∈ IIn, (X ∈Df ⇒ F (X) = { f (x) | x ∈ X } ⊆ ϑ(X)). ■

This inclusion formula is called Fundamental Theorem of Interval Arithmetic.

Interval extensions are also called interval forms or inclusion functions.

This definition implies the existence of infinitely many interval extensions of a given

real function. In particular, the weakest and tightest extensions are respectively

defined by: X→[-∞, +∞] and X → Hull F(X).

 46

The most common extension is known as the natural extension. Natural extensions

are obtained from the expressions of real functions, and are inclusion monotonic (this

property follows from the monotonicity of interval operations). Hence, given a real

function f, whose natural extension is denoted by F, and two intervals X and Y such

that X ⊂ Y, the following holds: F (X) ⊂ F (Y). We denote the lower and upper

bounds of the function interval range over a given box Y as (Y)F and (Y)F ,

respectively.

For a standard function h such as sin, exp, and so on, pre-declared in a given

programming language, it is not too difficult to obtain a good inclusion function H,

since monotonicity properties of these functions are well known and then

H (X) = {h(x): x ∈ X} for any X ∈ II in the domain of h. For a general function f(x), x

∈ IRn, the easiest method to obtain an inclusion function is so called natural interval

extension, which is obtained by replacing each occurrence of variable x with a box

including it, X, each occurrence of a predeclared function h by its corresponding

interval operators.

Some important properties of the inclusion function are given as follows (Neumaier

1990, Hansen 1992, Ratschek and Rokne 1995, Stahl 1995).

The properties of the inclusion function are as follows:

Property 1: The inclusion function F is said to be an isotone inclusion function over

X0 if for any pair of boxes Y, Z ⊆ X0, Y ⊆ Z implies F (Y) ⊆ F (Z).

Property 2: The inclusion function F is said to be a ∝-convergent inclusion function

over X0 if for any box Y ⊆ X0, w (F (Y))-w (f (Y)) ≤ c w (Y)α holds, where ∝ and c

are positive constants and f (Y) is the range of f over Y.

 47

Property 3: The inclusion function f has the zero convergence property, if

w (F (Z)) → 0 holds for all the {Zi} interval sequences for which Zi ⊆ X0

∀ i = 1, 2, … and w (Zi) → 0.

The following are the three methods used for developing the inclusion functions,

which can easily be constructed (Ratschek and Rokne 1995, Neumaier 1990, Tóth

2002):

a. Natural Interval Extension

Natural interval extension expands the arithmetical operations in a straightforward

way from real to intervals (Moore 1966). The natural inclusion function for all

functions is created by substitution of the real variables for intervals and the real

operations or standard functions for interval operations or respective inclusion

functions. It was shown that the convergence order of the natural inclusion function is

at least 1.

Natural interval extension inclusion functions are most widely used inclusion

functions, which can be applicable for non-differentiable function also.

b. Centered Form

The centered form can be sub classified into two forms: 1) Mean value forms, and 2)

Taylor forms (of second order). However, these inclusion functions depend on the

derivative of the function, thus we will use this form if and only if the function if

differentiable and also when the enclosure of the derivative is feasible to compute.

The derivative of the given function can be easily calculated using automatic

differentiation.

Mean value forms (Fc (X)) involving generalized gradients, can be defined as

equation (2.8):

 48

Fc (X) = f(c) + (X - c) T F ′(X) for X ∈ II (2.8)

where c = m(X). In general, midpoint will be used for c, but it can be anywhere in X.

If the convergence order of the inclusion function F ′(X) is at least one, then the

convergence order of the centered form is at least a quadratic.

Taylor forms can only be used when the direct computation of the mean value form is

not possible or if the Hessian inclusion F ′′(X) is already available and can be

incorporated without difficulties. Taylor form (Ft (X)) can be defined as equation

(2.9):

Ft (X) = f(c) + (X - c) T f ′(c) + 0.5 (X - c) T F ′′(X)(X - c) for X ∈ II (2.9)

c. Baumann’s Optimal Centered Form

Baumann introduced the optimal c for the centered form. He proved that fc(X) ≤ fb
-(X)

∀c∈X for an optimal b-∈X. The optimal lower bound is ()X-b
f , where b- can be

obtained in the one dimensional case as

X - X ,
(X) (X)

b
f f

− =
′ ′−

In higher dimensions the above formula must be used component wise. For the

optimal upper bound b+ one should reflect b− on the midpoint of the interval X.

The Baumann’s form always gives at least as good enclosure as the general centered

form; still its convergence order is also at least 2.

Nataraj and Kotecha (2002) propose an algorithm for global optimization using the

Taylor Bernstein form as inclusion function for better convergence rate in the

function. Also, the empirical convergence speed of inclusion functions are studied and

found that natural interval extension of a given function can be as good as usual

 49

quadratically convergent inclusion functions. Tóth (2002) compared different

inclusion methods and found that the centered forms (second-order) as larger

convergences order than that of the rest of the inclusion methods. Vinkó et al. (2002)

propose a new inclusion function called Kite for one-dimensional and multi

dimensional functions using the least gradient information. They also study the impact

of the kite inclusion function over the convergence, which helps in further

implementation.

2.2.7. Interval Computations and Mathematical Proofs

The powerful aspect of interval computations is tied to the Brouwer fixed-point

theorem (Kearfott 1996a), and shown in the Theorem 2.3.

Theorem 2.3 (Brouwer fixed point theorem) (Kearfott 1996a)

 Let D be homeomorphic to the closed unit ball in IIn, and suppose P is a continuous

mapping such that the P maps D into D, then P has a fixed point, i.e., there is an X∈D

such that P (X) = X.

The Brouwer fixed point theorem combined with interval arithmetic enables

numerical computations to prove existence of solutions to linear and nonlinear

systems. The simplest context in which this can be explained is the one-dimensional

interval Newton method.

Suppose f: X = [X , X] → IR has a continuous first derivative on X, suppose x%∈X,

F ′(X) is a set that contains the range of f ′ over X (such as when f ′is evaluated at X

with interval arithmetic). Then the operator

N (f; X, x%) = x% - f(x%) / F ′(X)

is termed the univariate interval Newton method. Applying the Brouwer fixed point

 50

theorem in the context of the univariate interval Newton methods leads to:

Theorem 2.4 (Miranda 1940)

If N (f; X, x%) ⊂ X, then there exists a unique solution of f(x) = 0 in X.

Existence of Theorem 2.4 follows from Miranda’s theorem (Miranda 1940), a

corollary of Brouwer fixed point theorem. Uniqueness is as follows: Suppose there

were two solutions x∈X and x% ∈X. Then f(x) = 0 = f(x%), so there is a ξ∈X with

f(x) = f(x%) + f ′(ξ)(x - x%) = f ′(ξ) (x - x%) = 0.

However, since N (f; X, x%) ⊂ X, f ′(ξ) cannot contain zero, so 0 ∉ f ′(X) (x - x%). But

this contradicts 0 = f ′(ξ) (x - x%) ∈ f ′(X) (x - x%).

Existence theory for multivariate interval Newton methods is similar. Uniqueness

theory proceeds by proving that the intervals derivative matrix or interval slope matrix

is regular. There are various ways of doing this computationally. For example, if a

preconditioned interval version of Gaussian elimination completes without pivots that

contain zero, and then the interval matrix cannot contain any singular matrices.

This computational existence uniqueness theory has wide use, from constructing

narrow bounds around approximate solutions to linear systems, within which an

actual solution must lie, to proving existence and uniqueness of solutions to operator

equations.

2.2.8. Interval Newton Method

Interval Newton methods are excellent methods for determining all zeros of a

continuously differentiable vector-valued function φ: X→ IRm where X ∈ IIm. These

methods are important tools for nonlinear optimization problems since they can be

 51

used for computing the critical points of φ by applying the methods of Jacobian

(()φ XJ), or for solving Kuhn-Tucker or John conditions in constrained optimization.

The interval Newton method was introduced by Moore (1966) and it has been further

extensively developed by many researchers. The latest state of art for interval Newton

methods may be found in Neumaier (1990). More detailed review of Interval Newton

methods is available in Ratschek and Rokne (1988), Neumaier (1990), Hansen (1992),

Ratschek and Rokne (1995), Kearfott (1996c) and so on.

2.2.9. Interval Methods for Uncertainity

In many real-life situations, the input data come from measurements. Measurements

are not 100% precise (Tung 2001). Therefore, if we have made the measurements

with accuracy ∆, and z obtained the measurement result, this means that the actual

value y of the measured quantity can take any value from the interval y = [z−∆, z+∆].

The desired solution x depends on the exact value of y from this interval. Thus, it

makes sense to produce the set of all possible solutions x that correspond to all

possible values y ∈ [z−∆, z+∆]. By this way interval framework can also consider the

uncertainty in the input data (Kearfott and Kreinovich 1996). This makes the Interval

Analysis to tackle the uncertainty of data inherently, which makes the whole approach

more powerful in real-time scenarios.

There are several useful quantities related to the concept of the interval: size, radius,

and midpoint (Schwartz 1999). The size (or thickness) of an interval indicates the

uncertainty in a value and is specified as a width ≥ 0. Intervals with zero thickness are

crisp intervals whereas non-crisp intervals are said to be thick. The concepts of radius

and midpoint are useful in describing intervals as well as constructing them.

 52

To construct a new interval, one way is to use an original value, which is a value that

supplies the midpoint point of a new interval. Then, a certain radius (uncertainty) can

be added to and subtracted from the original value to obtain a new interval. Similarly,

the midpoint can also serve as an approximation to a value with an error of plus or

minus the radius. Using these definitions, the percentage uncertainty in a midpoint

value would be:

(X) *100
(X)

rp
m

=

2.2.10. Motivation in Selection of Interval Methods

The following indicates the advantages of intervals.

 the control of all kinds of errors, especially rounding errors, truncation errors,

etc (Ratschek and Rokne 1995),

 the processing of infinite data sets (Ratschek and Rokne 1995),

 With regard to the global optimization, interval based optimization techniques

are able to continually delete portions of the search space with the objective of

maintaining a final box of any desired width, which contains the global

solution (Vaidyanathan and Halwagi 1994),

 Interval arithmetic can take care of uncertainty inherently, which is most

common property of any real-time problem (Kearfott and Kreinovich 1996,

Schwartz 1999), and

 Ease in integration to symbolic computing and consistency techniques.

 53

2.2.11. Applications of Interval Analysis

The following list indicates some of the basic applications using interval analysis

(Kearfott and Kreinovich 1996).

 In Engineering:

o to manufacturing, including:

 quality control;

 detection of defects in computer chips;

 flexible manufacturing.

o to automatic control, including:

 control of airplane engines;

 control of electric power plants.

o to robotics;

o to airplane inertial navigation;

o to civil engineering, including traffic control.

 In Ergonomics and Social Sciences:

o to learning curves (that describe how people learn);

o to project management;

o to service systems;

o to sociology.

 In Physics:

o to laser beams;

o to particle accelerators;

o to astrophysics (planet atmospheres);

o to image processing in radio astronomy.

 In Geology and Geophysics.

 54

 In Chemistry , including:

o to spectral analysis.

 In Computer Science and Engineering:

o to expert systems;

o to communication networks, especially computer networks.

 In Economics:

o to planning;

o to banking.

2.3. Feasible Sequential Quadratic Programming (FSQP)

This section deals with Feasible Sequential Programming (FSQP) and its related

algorithms. Moreover, it also presents the basic motivation in selection of FSQP for

the current research work. This section is greatly influenced by the information given

in http://www.aemdesign.com/FSQPwhatis.htm.

2.3.1. Introduction

Portable standard C implementation FSQP (CFSQP) and Fortran77 implementation

FSQP (FFSQP) were originally developed by Andre Tits' research group at the

Institute for Systems Research (ISR), University of Maryland.

The algorithm's main architects were Panier and Tits (1988). The implementation was

due to Zhou et al. (1997). The first version of the CFSQP, carried out by Craig

Lawrence, followed in 1993 (Lawrence et al. 1997, Lawrence and Tits 2001).

Responsibility for their further development and support was transferred to AEM

Design in 2000.

FSQP is a source code for minimization of the maximum of a set of smooth objective

functions subject to general smooth constraints.

 55

If the initial guess provided by the user is infeasible for some inequality constraint or

some linear equality constraint, FSQP first generates a feasible point for these

constraints; subsequently, the successive iterations generated by FSQP all satisfy

these constraints. Nonlinear equality constraints are turned into inequality constraints

and the maximum of the objective function is replaced by an exact penalty function

which penalizes nonlinear equality constraint violations only. The user has the option

of either requiring that the objective function (penalty function if nonlinear equality

constraints are present) decreases at each iteration after feasibility for nonlinear

inequality and linear constraints has been reached (monotone line search), or requiring

a decrease within at most four iterations (nonmonotone line search). The user must

provide functions that define the objective functions and constraints and may either

provide functions to compute the respective gradients or require that FSQP estimate

them by forward finite differences.

When solving problems with numerous sequentially related constraints (or

objectives), such as discretized semi-infinite programming (SIP) problems, the C

version CFSQP gives the user the option to use an algorithm that efficiently solves

these problems, greatly reducing computational effort.

FSQP is an implementation of two algorithms based on Sequential Quadratic

Programming (SQP), modified so as to generate feasible iterates. In the first one

(monotone line search), a certain Armijo type arc search is used with the property that

the step one is eventually accepted, a requirement for superlinear convergence. In the

second one the same effect is achieved by means of a nonmonotone search along a

straight line. The merit function used in both searches is the maximum of the

objective functions if there is no nonlinear equality constraint, or an exact penalty

function if nonlinear equality constraints are present.

 56

2.3.2. The Basic FSQP Algorithm

SQP (Sequential Quadratic Programming) type algorithm modified so as to generate

feasible iterates. The basic problem solved is (where the variable x is n-dimensional)

min max {fi(x)}
x i∈I
subject to

gj(x) ≤ 0, j = 1,…,ni,, where, ni is the number of inequalities

hj(x) = 0, j = 1,…,ne, where, ne is the number of equalities.

Two phase operation:

Phase I - generate iterate satisfying all linear constraints and nonlinear inequality

constraints.

Phase II - minimize the maximum of the objectives, while maintaining satisfaction of

linear constraints and nonlinear inequality constraints, nonlinear equality constraints

being satisfied asymptotically.

Feasibility

Consider the simple problem

min fi(x)
 x
subject to g(x) ≤ 0,

Feasibility requires g(xk) ≤ 0, for all k.

FSQP generates iterates that satisfy all inequality constraints and linear equality

constraints.

 57

2.3.3. Why Feasibility?
From an application point of view:

 Objective may not be achieved if certain constraints are violated. For example,

the steady-state errors of a dynamical system are undefined if the system is not

stable. Important for real-time applications.

 Termination of the optimization process after a prescribed amount of time, in

which case it may be crucial that the sub-optimal solution satisfy at least some

hard constraints.

 In the context of optimal design, tradeoff exploration cannot meaningfully

take place if some hard constraints are not first satisfied. It is thus of great

interest to produce iterates that all satisfy these hard constraints.

From an algorithmic point of view:

 The line search criterion can be based on the decrease of the objective

function, i.e., there is no need for an artificial "merit function".

 In the SQP context, whenever the current iterate is feasible, the QP sub

problem has a feasible solution.

2.3.4. Nonlinear Equality Constraints

The basic FSQP algorithm was designed for nonlinear inequality constraints only. To

handle nonlinear equality constraints, FSQP incorporates a modification of a scheme

due to Mayne and Polak (1976). Equality constraints h(x) = 0 are turned into

inequality constraints h(x) ≤ 0 and h(x) ≥ 0. Negative values are penalized, where the

 58

objective function is replaced with f(x)-
1

em

j=
∑ cj hj(x), where cj, j = 1,…,me, are positive

penalty parameters (iteratively increased, but bounded).

The result is a differentiable exact penalty function.

2.3.5. Line Search

FSQP provides a choice of line searches:

Armijo (monotone) - Requires decrease of objective function at every step (Arminjo

1966).

Drawback: requires evaluation of constraints at an intermediate point.

Nonmonotone - Requires decrease of objective in at most four steps (Bonnans et al.

1992).

Drawback: objective could increase between successive iterates.

Special features of line search: no further evaluation of constraints once a constraint is

violated. Active or previously violated functions are evaluated first at each trial point.

2.3.6. Multiple Objectives/Constraints

Consider the following problem:
min max {fi(x, ω)}

x ω∈Ω

subject to g (x, ξ) ≤ 0, ∀ ξ ∈ Ξ

where Ω ⊂ IR, Ξ ⊂ IR are large, but finite, sets. For example, finely discretized Semi

infinite Programming (SIP) problems.

 59

CFSQP is equipped to efficiently solve problems with large sets of objectives and/or

constraints. Consequently, the sizes of the QP's to be solved as well as the number of

gradient evaluations are drastically reduced.

2.3.7. Automatic Differentiation

ADIFFSQP Version 0.9 (experimental version), an interface between FFSQP and the

automatic differentiation preprocessor ADIFOR2.0, is also available (Liu and Tits

1997).

2.3.8. Selected Applications (http://www.aemdesign.com/FSQPapplref.htm)

 RIOTS: A Matlab toolbox for solving optimal control problems,

 Magnetic Resonance Imaging ,

 Clutter noise in Over-The-Horizon radar,

 Robotic manipulation planners,

 Hub-and-shaft assemblies for dual-wheel excavators,

 Optimal Protein Separation,

 Parametric Surface Polygonization,

 Analysis of intermediately lethal tumors,

 Hierarchical traffic control systems,

 Failure detection and isolation,

 Multi-purpose reservoir systems,

 Neural net based predictive control, and

 Aerosol thermodynamics

 60

2.3.9. Motivation in Selection of FSQP

 FSQP algorithm uses directly tackling optimization problems with: multiple

competing linear/nonlinear objective functions (minimax), linear/nonlinear

inequality constraints, and linear/nonlinear equality constraints.

 (http://www.enee.umd.edu/Newsletter/vol5_no1/fsqp.htm)

 It also contains special provisions for maintaining “semi-feasibility” of each

iterate and efficiently handling problems with multiple “sequentially related”

objectives and/or constraints. (http://www.enee.umd.edu/Newsletter/vol5_no1/

fsqp.htm)

 FSQP methods are particularly useful for solving those problems arising from

engineering design where the objective function might be undefined outside

the feasible region (Yang et al. 2003).

 FSQP methods are that the objective function can be used as a merit function

to avoid the use of a penalty function (Yang et al. 2003).

 The main advantage of this algorithm is a reduction in the amount of

computation required in order to generate a new iterate (Lawrence and Tits

2001).

 FSQP is interfaced with Automatic differentiation (Liu and Tits 1997).

 61

Chapter 3

Tree Management Approach

This chapter mainly describes the existing tree management systems and proposes a

new tree management system. The existing tree management systems are originally

developed by Körf (1998) is the basis for the proposed new system.

3.1. Introduction

The tree management systems can be broadly classified into: 1. Brute-force search

tree, and 2. Heuristic search tree (Körf 1998).

1. Brute-force Search Tree

The most general search algorithms are brute-force searches, since they do not require

any domain specific knowledge. All that is required for a brute-force search is a state

description, a set of legal operators, an initial state, and the description of the goal

state. The most important brute-force searches are breadth-first, uniform-cost, depth-

first, depth-first iterative deepening, and bidirectional search. In the descriptions of

the algorithms below, to generate a node means to create the data structure

corresponding to that node, whereas to expand a node means to generate all the

children of that node.

a. Breadth-First Search

Breadth-first search expands nodes in order of their distance from the root, generating

one level of the tree at a time until a solution is found. This is shown in Figure 3.1. It

is most easily implemented by maintaining a queue of nodes, initially containing just

 62

the root, and always removing the node at the head of the queue, expanding it, and

adding its children to the tail of the queue.

Since it never generates a node in the tree until all the nodes at shallower levels have

been generated, breadth-first search always finds a shortest path to a goal. Since each

node can be generated in constant time, the amount of time used by breadth-first

search is proportional to the number of nodes generated, which is a function of the

branching factor ‘b’ and the solution depth ‘d’. Since the number of nodes at level ‘d’

is bd, the total number of nodes generated in the worst case is b + b2 + b3 + …+ bd,

which is O(bd), the asymptotic time complexity of breadth-first search.

The main drawback of breadth-first search is its memory requirement. Since each

level of the tree must be saved in order to generate the next level, and the amount of

memory is proportional to the number of nodes stored, the space complexity of

breadth-first is also O(bd). As a result, breadth-first search is severely space-bound in

practice, and will exhaust the memory available on typical computers in a matter of

minutes.

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 3.1 Order of Node Generation for Breadth-First Search

Source: Körf (1998)

 63

b. Uniform-Cost Search

If all edges do not have the same cost, then breadth-first search generalizes to

uniform-cost search. Instead of expanding nodes in order of their depth from the root,

uniform-cost search expands nodes in order of their cost from the root. At each step,

the next node n to be expanded is one whose cost g(n) is lowest, where g(n) is the sum

of the edge costs from the root to node n. The nodes are stored in a priority queue.

This algorithm is also known as Dijkstra’s single-source shortest-path algorithm

(Dijkstra 1959).

Whenever a node is chosen for expansion by uniform-cost search, a lowest-cost path

to that node has been found. The worst-case time complexity of uniform-cost search is

O(bc/m), where c is the cost of an optimal solution, and m is the minimum edge cost.

Unfortunately, it also suffers the same memory limitation as breadth-first search.

c. Depth-First Search

Depth-First Search remedies the space limitation of breadth-first search by always

generating next a child of the deepest unexpanded node as shown in Figure 3.2. Both

algorithms can be implemented using a list of unexpanded nodes; with the difference

that breadth-first search manages the list as a first-in first-out queue, whereas depth-

first search treats the list as a last-in first-out stack. More commonly, depth-first

search is implemented recursively, with the recursion stack taking the place of an

explicit node stack.

The advantage of depth-first search is that its space requirement is only linear with

respect to the search depth, as opposed to exponential for breadth-first search. The

reason is that the algorithm only needs to store a stack of nodes on the path from the

 64

root to the current node. The time complexity of a depth-first search to depth ‘d’ is

O(bd), since it generates the same set of nodes as breadth-first search, but simply in a

different order. Thus, as a practical matter, depth-first search is time limited rather

than space-limited.

The disadvantage of depth-first search is that it may not terminate on an infinite tree,

but simply goes down the left-most path forever. Even a finite graph can generate an

infinite tree. The usual solution to this problem is to impose a cutoff depth on the

search. Although the ideal cutoff is the solution depth ‘d’, this value is rarely known

in prior to solving the problem. If the chosen cutoff depth is less than ‘d’, the

algorithm will fail to find a solution, whereas if the cutoff depth is greater then ‘d’, a

large price is paid in execution time, and the first solution found may not be an

optimal one.

d. Depth-First Iterative-Deepening

Depth-first iterative deepening (DFID) combines the best features of breadth-first and

depth-first search (Körf 1985, Stickel and Tyson 1985). DFID first performs a depth-

first search to depth one, then starts over, executing a complete depth-first search to

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

Figure 3.2 Order of Node Generation for Depth-First Search

 Source: Körf (1998)

 65

depth two, and continues to run depth-first searches to successively greater depths,

until a solution is found (see Figure 3.3).

Since it never generates a node until all shallower nodes have been generated, the first

solution found by DFID is guaranteed to be along a shortest path. Furthermore, since

at any given point it is executing a depth-first search, saving only a stack of nodes,

and the algorithm terminates when it finds a solution at depth ‘d’, the space

complexity of DFID is only O(d).

Although it appears that DFID wastes a great deal of time in the iterations prior to the

one that finds a solution, this extra work is usually insignificant. To see this, note that

the number of nodes at depth ‘d’ is bd, and each of these nodes are generated once,

during the final iteration. The number of nodes at depth d-1 is bd-1, and each of these

is generated twice, once during the final iteration, and once during the penultimate

iteration. In general, the number of nodes generated by DFID is

bd + 2bd-1 + 3 bd-2 + … + db.

This is asymptotically O (bd) if ‘b’ is greater than one, since for large values of d the

lower order terms become insignificant. In other words, most of the work goes into

the final iteration, and the cost of the pervious iterations is relatively small. The ratio

of the number of nodes generated by DFID to those generated by breadth-first search

on a tree is approximately b/(b-1). In fact, DFID is asymptotically optimal in terms of

time and space among all brute-force shortest-path algorithms on a tree (Dillenburg

and Nelson 1994).

If the edge costs differ from one another, then one can run an iterative deepening

version of uniform-cost search, where the depth cutoff is replaced by a cutoff on the

g(n) cost of a node. At the end of each iteration, the threshold for the next iteration is

 66

set to the minimum cost of all nodes generated on the previous iteration whose cost

exceeded the previous threshold.

On a graph with cycles, however, breadth-first search may be much more efficient

than any depth-first search. The reason is that a breadth-first search can check for

duplicate nodes whereas a depth-first search cannot. Thus, the complexity of depth-

first search depends on the number of paths of a given length. For example, in a

square grid, the number of nodes within a radius ‘r’ of the origin is O(r2), whereas the

number of paths of length r is O(3r), since there are three children of every node, not

counting its parent. Thus, in a graph with a large number of very short cycles,

breadth-first search is preferable to depth-first search, if sufficient memory is

available. Two approaches to the problem of pruning duplicate nodes in depth-first

search are presented in Dillenburg and Nelson (1993) and Taylor and Körf (1993).

e. Bidirectional Search

Bidirectional search is a brute-force algorithm that requires an explicit goal state

instead of simply a test for a goal condition (Pohl 1971). The main idea is to

simultaneously search forward from the initial state, and backward from the goal

state, until the two search frontiers meet. The path from the initial state is then

Figure 3.3 Order of Node Generation for Depth-First Iterative Deepening Search

0

1, 2,

4, 5, 7, 8,

11 12 14 15 18 19 21 22

3, 9 6, 16

10 13 17 20

Source: Körf (1998)

 67

concatenated with the inverse of the path from the goal state to the complete solution

path.

Bidirectional search still guarantees optimal solutions. Assuming that the comparisons

for identifying a common state between the two frontiers can be done in constant time

per node, by hashing for example, the time complexity of bidirectional search is

O(bd/2) since each search need only proceeds to half the solution depth. Since at least

one of the searches must be breadth-first in order to find a common state, the space

complexity of bidirectional search is also O(bd/2). As a result, bidirectional search is

space bound in practice.

f. Combinatorial Explosion

The problem with all brute-force search algorithms is that their time complexities

grow exponentially with problem size. This is called combinatorial explosion, and as

a result, the size of problems that can be solved with these techniques is quite limited.

2. Heuristic Search Tree

In order to solve larger problems, domain-specific knowledge must be added to

improve the search efficiency. In Artificial Intelligence, heuristic search has a general

meaning and a more specialized technical meaning. In a general sense, the term

heuristic is used for any advice that is often effective, but is not guaranteed to work in

every case. Within the heuristic search literature, however, the term heuristic usually

refers to the special case of a heuristic evaluation functions.

a. Heuristic Evaluation Functions

In bound constrained optimization problem for example, the objective function is of

maximization type, heuristic evaluation function estimates the cost as the upper bound

of the objective function. The key properties of a heuristic function are that it

 68

estimates actual cost, and that it is inexpensive to compute. In addition, most heuristic

functions are derived from the original problem, for example, ratio of upper bound of

the objective function to the range of objective function, and so on. Similarly, one can

define heuristic function for constrained optimization and also for continuous

constraint satisfaction problems.

A number of algorithms make use of heuristic functions, including pure heuristic

search, the A* algorithm, iterative deepening-A*, depth-first branch and bound, and

the heuristic path algorithm. In addition, heuristic information can be employed in

bidirectional search as well.

b. Pure Heuristic Search

The simplest of these algorithms, pure heuristic search, expands nodes in order of

their heuristic values h(n) (Doran and Michie 1966).

Example:

For Bound Constrained Optimization Problem

h(n) = Upper bound of the objective function,

For Continuous Constraint Satisfaction Problem

h(n) = Sum of infeasibility over all constraints,

For Constrained Optimization problem

h(n) = Upper bound of the objective function + Sum of infeasibility over all

constraints

It maintains a closed list of those nodes that have already been expanded, and an open

list of those nodes that have been generated but not yet expanded. The algorithm

begins with just the initial state on the Open list. At each cycle, a node on the Open

 69

list with the minimum or maximum (based on the type of problem) h(n) value is

expanded, generating all of its children, and is placed on the Closed list. The heuristic

function is applied to the children, and they are placed on the Open list in order of

their heuristic values. The algorithm continues until a goal state is chosen for

expansion.

In a graph with cycles, multiple paths will be found to the same node, and the first

path found may not be the shortest. When a shorter path to a closed node is found, the

node is moved to open, and the shorter path is associated with it. The main drawback

of pure heuristic search is that as it ignores the cost of the path so far to node n, it does

not find optimal solutions.

Breadth-first search, uniform-cost search, and pure heuristic search are all special

cases of a more general algorithm called best-first search. In each cycle of a best-first

search, the node that is best according to some cost function is chosen for expansion.

The best-first algorithms differ only in their cost functions: the depth of node n for

breadth, cost of the path from initial state to node n (g(n)) for uniform-cost search,

and h(n) for pure heuristic search.

c. A* Algorithm

The A* algorithm (Hart et al. 1968) combines features of uniform-cost search and

pure heuristic search to efficiently compute optimal solutions. A* is a best-first search

in which the cost associated with a node is f(n) = g(n) + h(n), where g(n) is the cost of

the path from the initial state to node n, and h(n) is the heuristic estimate of the cost of

a path from node n to a goal. Thus, f(n) estimates the lowest total cost of any solution

path going through node n. At each point a node with the lowest f value is chosen for

expansion. Ties among nodes of equal f value should be broken in favor of nodes with

 70

lower h values. The algorithm terminates when a goal node is chosen for expansion.

The main drawback of A*, and indeed of any best-first search, is its memory

requirement. Since at least the entire Open list must be saved, A* is severely space-

limited in practice, and is no more practical than breadth-first search on current

machines.

d. Iterative-Deepening-A*

Just as depth-first iterative-deepening solved the space problem of breadth-first

search, iterative-deepening-A* (IDA*) eliminates the memory constraint of A*,

without sacrificing solution optimality (Körf 1985). Each iteration of the algorithm is

a depth-first search that keeps track of the cost, f(n) = g(n) + h(n), of each node

generated. As soon as a node is generated whose cost exceeds a threshold for that

iteration, its path is cut off, and the search backtracks before continuing. The cost

threshold is initialized to the heuristic estimate of the initial state, and in each

successive iteration it is increased to the total cost of the lowest-cost node that was

pruned during the previous iteration. The algorithm terminates when a goal state is

reached whose total cost does not exceed the current threshold.

Since IDA* performs a series of depth-first searches, its memory requirement is linear

with respect to the maximum search depth. In addition, if the heuristic function is

admissible, IDA* finds an optimal solution. Finally, by an argument similar to that

presented for DFID, IDA* finds an optimal solution. Moreover, IDA* expands the

same number of nodes, asymptotically, as A* on a tree, provided that the number of

nodes grows exponentially with solution cost. These facts, together with the

optimality of A*, imply that IDA* is asymptotically optimal in time and space over all

heuristic search algorithms that find optimal solutions on a tree. Additional benefits of

 71

IDA* are that it is much easier to implement, and often runs faster than A*, since it

does not incur the overhead of managing the Open and Closed lists.

The other Heuristic Search algorithms are Depth-First Branch-and-Bound,

Complexity of Finding Optimal Solutions, Heuristic Path Algorithm, and Recursive

Best-First Search (Körf 1998).

3.2. Adaptive Tree Management

3.2.1. Introduction

The tree management system in the proposed IP maintains a stage-wise branching

scheme that is conceptually similar to the iterative deepening approach (Körf 1985).

The new adaptive tree management is applied in solving CCSP and COP problems.

This tree management comprises of two subunits such as best-first (in case of CCSP,

worst-first is selected because we select the box with the maximum infeasibility

degree) and restricted depth-first tree management systems. The best-first of the

proposed tree management uses the following merit function to rank the boxes in the

pending list.

In CCSP:

Merit function value = Sum of infeasibility over all constraints,

In COP:

Static penalty box ranking:

Merit function value = Upper bound of objective function + Sum of infeasibility over

all constraints.

 72

Non-penalty box ranking:

If a feasible solution (CLB) is not identified:

Merit function value = Sum of infeasibility over all constraints

If a feasible solution (CLB) is identified:

Merit function value = Upper bound of objective function

However, the depth-first unit of the proposed tree management utilizes the Total Area

Deleted (TAD) by discarding boxes fails to improve in two consecutive partitioning

iterations in this sub-tree.

Initial steps of the adaptive tree management procedure:

1. Box ranking

Rank the candidate boxes according to merit function defined as above.

2. Generating partial deeper tree levels

The new approach has the following feature related to the selection of child box to re-

partition:

a. Once a parent box is selected for re-partitioning, the algorithm first assesses the

child boxes before placing them in the current stage’s candidate list.

b. It ranks child boxes according to the swapping dual criteria and then selects the first

to re-partition.

c. Steps 2a and 2b are repeated until two consecutive re-partitioning steps do not

result in at least one discarded box.

3. Maintaining stage-wise tree with two lists of candidate boxes and invoking

local search

a. The new IP algorithm invokes FSQP in each unprocessed box once the algorithm

fails to discard a box in two consecutive re-partitioning iterations.

 73

 b. If FSQP identifies a stationary point better than the CLB in any box, then the CLB

is updated.

c. Boxes subjected to FSQP are placed back in the current candidate list (first

candidate list).

 d. After FSQP is invoked once in a given stage, all generated child boxes are placed

in the candidate list of the next stage (second candidate list).

e. The candidate boxes in the next stage are not explored unless all boxes in the

current stage’s list is depleted.

Figure 3.4. Initial steps of the adaptive iterative deepening procedure.

A more detailed description is presented in the following subsection 3.2.2.

3.2.2. Detailed description

The iterative deepening approach explores all nodes generated at a given tree level

(stage) before it starts assessing the nodes at the next stage. Exploration of boxes at

1

3

Discard failed
twice! call FSQP

Select # 3

Stage 2:
Second Stage Candidate list
starts, but not explored before
#2 and #5 are explored. Back
to # 5, first ranking box in
Stage 1.

2

4 5

6 7

Stage 1: Candidate list ranked
in order of valid criterion: # 4 is
first to re-partition, but its
children go to list of Stage 2.

Select #3

 74

the same stage can be done in any order, the sweep may start from best-first box or

the one on the most right or most left of that stage. On the other hand, in the proposed

adaptive tree management system, a node (parent box) at the current stage is

permitted to grow a sub-tree forming partial succeeding tree levels and to explore

nodes in this sub-tree before exhausting the nodes at the current stage. In the COP, if

a feasible solution (CLB) is not identified yet boxes in the sub-tree are ranked

according to ascending order of total feasibility uncertainty degree of a box criterion,

otherwise they are ranked in descending order of upper bound of the objective

function. In the CCSP, boxes are simply ranked according to descending order of total

feasibility uncertainty degree of a box criterion and a box is selected among the

children of the same parent according to maximum total feasibility uncertainty degree

of a box (worst-first). In the COP, if a feasible solution is not identified yet a box is

selected among the children of the same parent according to minimum total feasibility

uncertainty degree of a box criterion, otherwise a box with maximum upper bound of

the objective function. Then, the child box is partitioned again continuing to build the

same sub-tree. This sub-tree grows until the TAD by discarding boxes fails to improve

in two consecutive partitioning iterations in this sub-tree. Such failure triggers a call

to local search where all boxes not previously subjected to local search are processed

by the procedure FSQP, after which they are placed back in the list of pending boxes

and exploration is resumed among nodes at the current stage. Feasible solutions found

by FSQP are stored. If a box contains more than one feasible solution, then these are

discovered in its child boxes.

The above adaptive tree management scheme is achieved by maintaining two lists of

boxes, Bs and Bs+1 that are the lists of boxes to be explored at the current stage s and

the next stage s+1, respectively. Initially, the set of indeterminate boxes in the

 75

pending list Bs consists of X only and Bs+1 is empty. As child boxes are added to a

selected parent box, they are ordered in descending order of merit function. Boxes in

the sub-tree stemming from the selected parent at the current stage are explored and

partitioned until there is no improvement in TAD in two consecutive partitioning

iterations. At that point, partitioning of the selected parent box is stopped and all

boxes that have not been processed by local search are sent to FSQP module and

processed to identify feasible point solutions if FSQP is successful in doing so. From

that moment onwards, child boxes generated from any other selected parent in Bs are

stored in Bs+1 irrespective of further calls to FSQP in the current stage. When all

boxes in Bs have been assessed (discarded, stored as feasible boxes or partitioned), the

search moves to the next stage, s+1, starting to explore the boxes stored in Bs+1. In

this manner, a lesser number of boxes (those in the current stage) are maintained in

primary memory and the search is allowed to go down to deeper levels within the

same sub-tree, increasing the chances to discard boxes. On the other hand, by

enabling the search to explore horizontally across boxes at the current stage, it might

be possible to find feasible solutions faster by not partitioning parent boxes that are

not so promising.

The tree continues to grow in this manner taking up the list of boxes of the next stage

after the current stage’s list of boxes is exhausted. The algorithm stops either when

the theoretical number of feasible solutions are found (in equality problems) or CPU

time reaches a given limit or when there are no boxes remaining in Bs and Bs+1. The

proposed IP algorithm is described below.

IP with adaptive tree management

Step 0. Set tree stage, s=1 and future stage, r=1. Set non-improvement counter for

TAD: nc=0. Set Bs, the list of pending boxes at stage s equal to X, Bs ={X}, and

 76

Bs+1=∅.

Step 1. COP: If the number of function evaluations or CPU time reaches a given

limit, or, both Bs=∅ and Bs+1=∅, then stop.

 CCSP: If the theoretical number of solutions is identified or CPU time reaches

a given limit, or, both Bs=∅ and Bs+1=∅, then stop.

Else, if Bs=∅ and Bs+1≠∅, then set s←s+1, set r←s, and continue.

Pick first box Y in Bs and continue.

1.1 If Y is infeasible or suboptimal (in the COP), discard Y, and go to Step

1.

1.2 If Y is sufficiently small, evaluate m, its mid-point, and if it is a

feasible improved solution, update CLB, re-set nc ←0, and store m.

Remove Y from Bs and go to Step 1. (In the CCSP, omit the CLB update

and store the feasible solution.)

1.3 Else go to Step 2.

Step 2. Select variable(s) to partition (use the subdivision direction selection rule IIR).

Set v = number of variables to partition.

Step 3. Partition Y into 2v non-overlapping child boxes. Check TAD, if it improves,

then re-set nc ←0, else set nc ← nc +1.

Step 4. Remove Y from Bs, add 2v boxes to Br.

4.1. If nc >2, apply FSQP to all (previously unprocessed by FSQP) boxes

in Bs and Bs+1, re-set nc←0. If FSQP is called for the first time in stage

s, then set r←s+1. Go to Step 1.

 77

4.2. Else, go to Step 1. ■

The adaptive tree management system in IP is illustrated in Figure 3.4 on a small tree

where node labels indicate the order of nodes visited. The nodes 3, 5, 6, 8, 9, 11, 12,

13, 14, 15, 16 are in Stage 1’s list and should be explored before moving to Stage 2.

All their children are placed in Stage 2’s list after the first FSQP call in Stage 1. There

might be more than one FSQP calls in Stage 1, this does not affect the placement of

the children.

The adaptive tree management strategy proposed here can also be used in non-interval

partitioning algorithms such as Baron and LGO. It is effective in the sense that it

allows going deeper into selected promising parent boxes while providing a larger

perspective on how promising a parent box is by comparing it to all other boxes

available in the current stage’s box list.

 78

Figure 3.5. Implementation of the adaptive iterative deepening procedure.

 79

Chapter 4

Interval Inference for Global Optimization

This chapter presents the details on Interval Inference Rule (IIR) for solving global

optimization problems including BCOP, CCSP and COP. It also presents the details

on Interval Partitioning Algorithms (IPA) for BCOP, CCSP and COP and different

subdivision direction rules such as Rule A, Rule B, Rule C, Rule D, and Smear Rule.

4.1. Interval Partitioning Algorithms

Interval Partitioning Algorithms (IPA) use interval arithmetic (Moore 1966) to

produce reliable results for constrained and bound constrained optimization (Hansen

1992, Ratschek and Rokne 1995). Due to their reliability, interval applications take

place in a wide scope of scientific fields (Kearfott and Kreinovich 1996). In bound

constrained global optimization problems, an IPA subdivides the given domain into

smaller subspaces or boxes that are assessed according to their function range

calculated by using an approximating inclusion function. Based on the function range

bounds and a known best solution that is updated during the search, some subspaces

are deleted reliably, because they cannot hold at the global optimum solution (Pinter

1992, Hammer et al. 1993). Subdivision continues in remaining boxes so that the

location of the global optimum solution can be enclosed within a small box of a given

tolerance. The final report contains all such boxes in the given function domain.

The prototype interval branch and bound algorithm for solving (1.1) is as follows:

Step 1: Y ← X0, initialize the empty list Lw

Step 2: Choose the coordinate directions (i.e., Rule A, B, C, D and E)for the splitting

of Y.

 80

Step 3: Split Y normal to the chosen directions, cutting the box a given number of

times in each direction. Let Y1,…, Ys be the subboxes obtained.

Step 4: For i = 1 to s do

4.1 : Delete Yi if it can be proven that Yi contains no optimal solution or

diminish Yi if it can be proven that the respective part of Yi contains no

optimizer point.

4.2 : If Yi is not deleted, then store it (as a whole or diminshed) into working

list Lw.

Step 5: Choose a box from Lw and remove it from the working list. Let Y denote the

chosen box.

Step 6: While termination criterion does not hold go to Step 2.

In Step 2 of IPA, subdivision direction selection step, subdivision rules proposed up

to date are based on criteria such as the width of variable intervals (Rules A and D), or

estimated function improvement by selected variables (gradient information such as

Rules B, C and E). The performance of such rules is assessed extensively on standard

test problems (Ratz and Csendes 1995, Csendes and Ratz 1996, 1997, Csendes et al.

2000) resulting in the general conclusion that gradient based rules work much better.

1. Rule A

This Rule A selects the subdivision direction based on the interval–width (Moore

1966, Ratschek and Rokne 1988, Ratz and Csendes 1995, Ratz 1996, Berner 1996,

Csendes and Ratz 1996, 1997, Csendes et al. 2000). According to this rule, the

coordinate direction with maximum ()D i value will be selected, and the D(Xi) can be

defined as in equation (4.1):

D(Xi) := w(Xi) (4.1)

 81

where, Xi is the variable vector

It is found that an algorithm with Rule A is convergent both with and without the

monotonicity test (Ratschek and Rokne 1988, Ratz and Csendes 1995, Csendes and

Ratz 1997, Csendes et al. 2000).

2. Rule B

Hansen (1992) proposes the Rule B, with initiation from G. W. Walster (Ratz and

Csendes 1995, Ratz 1996, Berner 1996, Csendes and Ratz 1996, 1997, Csendes et al.

2000). According to this rule, a coordinate direction with maximum ()D i is chosen for

subdivision. However, the ()D i can be defined as in equation (4.2):

D(i) := w(Fi
′(Xi)) * w(Xi) (4.2)

where Fi
′(Xi) is the first order derivative with respect to variable Xi.

It is also found that this subdivision direction rule can also be carried out for many

directions in a single iteration step (Csendes and Ratz 1997). This rule becomes

nonconvergent if the monotonicity test is removed from the algorithm (Csendes and

Ratz 1997, Csendes et al. 2000).

3. Rule C

Ratz proposes the Rule C (Ratz and Csendes 1995, Ratz 1996, Berner 1996, Csendes

and Ratz 1996, 1997, Csendes et al. 2000), with an underlying idea of minimizing the

width of the inclusion function. According to this rule, a coordinate direction with

maximum ()D i is chosen for subdivision. However, the ()D i can be defined as in

equation (4.3):

D(i) := w (Fi
′(Xi) * (Xi - m(Xi))) (4.3)

where Fi
′(Xi) is the first order derivative with respect to variable xi.

 82

However, this formulation shows the model algorithm with the direction selection rule

can be related to Lipschitzian partition methods for global optimization (Pinter 1986,

1992).

4. Rule D

Rule D is a derivative free method such as Rule A, and reflects the machine

representation of the inclusion function F(X) (Hammer et al. 1993, Ratz and Csendes

1995, Ratz 1996, Berner 1996, Csendes and Ratz 1996, 1997, Csendes et al. 2000).

According to this rule, the coordinate direction with maximum ()D i will be selected

for subdivision from the expression (4.4).

 w(Xi) if 0∈ Xi

D(i) :=

 w(Xi) / min {|xi|; xi ∈ Xi } otherwise

5. Rule E

Ratz proposes Rule E (Ratz and Csendes 1995, Ratz 1996, Berner 1996, Csendes and

Ratz 1996, 1997, Csendes et al. 2000,) similar to Rule C, with an underlying idea of

minimizing the width of the inclusion function. According to this rule, a coordinate

direction with maximum ()D i is chosen for subdivision and the ()D i can be defined

as in equation (4.5):

D(i) := w ((Xi - m(Xi)) (Fi
′(m(X))+0.5 *

1
(()

n

ij
j

F
=

′′∑ X (Xj – m(Xj)))) (4.5)

where Fi
′(m(Xi)) is the first order derivative with respect to variable midpoint of Xi,

and

Fi
′′ (X) is the second order derivative with respect to variable x.

(4.4)

 83

Kearfott and Manuel (1990) propose a new rule known as smear rule for finding the

roots of nonlinear systems of equations. According to this rule, the variable with the

largest rate of change (the absolute value of the Jacobian element) multiplied by the

width of its domain is selected.

The coordinate of maximum smear is defined to be k such that sk = max 1≤j≤n sj, where

sj equals to max 1≤i≤n {|Ai,j|}w(Xj).

In Step 3 of IPA, multi-section of a selected box step, several strategies can be

applied, such as k-best strategy; subdivision of a single variable’s width into s > 2

pieces (Csallner et al. 2000a, 2000b, Casado et al. 2001a, 2001b).

In Step 5 of IPA, the box selection step, several strategies can be applied, such as,

select the box with best upper bound (Skelboe 1974, Ratschek and Rokne 1988);

select the box which has been longest in the list (Hansen and Sengupta 1980, Hansen

1992); and select the box which has maximum width (Hansen and Sengupta1980),

and so on.

In Step 6 of IPA (Termination criterion), termination criterion also plays an important

role in IPA to obtain solutions which are close to the actual solutions. Kearfott and

Walster (2000) introduce a new termination criterion, i.e., thickness stopping

criterion, which can be used for global optimization algorithms using interval

analysis. The other stopping criteria are a heuristic domain and range stopping

criteria, which is used to determine the accuracy tolerances (Moore 1966, Neumaier

1990, Hansen 1992, Ratscheck and Rokne 1995).

Interval Constraints for CCSP

The general scheme for solving the interval constraint is as follows. Interval

techniques for solving CCSP are based on Branch and Prune / Splitting and Filtering

 84

approaches:

• branching consists of splitting the search space into smaller parts and therefore

easier to handle;

• pruning consists of filtering the current box to remove inconsistent elements.

Splitting is generally carried out by bisecting the domain(s) of the selected

variable(s). It mostly results in two new domains to filter. In some cases though, it

may be more efficient to split the current filtered domain in more than two smaller

boxes (Chabert 2005). The bisection stage results in the creation of so-called child

boxes. Variable selection is made according to different heuristics, such as choosing

the variable with the domain of largest width (usually referred to as "largest first" or

Rule A), or choosing the next variable on the pre-established sequence of variables

("round-robin"), or even choosing the variable with the largest rate of change (i.e., the

absolute value of the Jacobian element) multiplied by the width of its domain (“Smear

rule” by Kearfott and Manuel 1990).

Pruning / Filtering is performed by using consistency techniques. Basically

consistency techniques check the satisfaction of the constraints. If the test is negative

then the current box is discarded. A very naive version of such a technique is the

following: suppose you want to check the consistency of an equality constraint of the

form c : f(x)=0 over some box X. If the interval evaluation of f over X does not

contain 0, then you can immediately conclude that c is inconsistent (i.e., is not

feasible) over X, and you can discard X. Convergence of this method is very slow for

it totally relies on interval evaluations that are known to overestimate ranges of

functions.

 85

4.2. Basic Terminologies and Definitions

Definition 4.1 (Continuous real constraint):

A continuous real constraint is an atomic formula made of expressions and relations

symbols, such as equality or an inequality.

 Let c be a real continuous constraint defined over X included in IRn. Let cρ be the

subset of IRn satisfying c. Then any element s of X intersected with cρ is called a

solution of c. Such elements are also called consistent elements for c.

As a result, a constraint divides its domain of definition X into two distinct subsets:

the subset of consistent elements and the subset of inconsistent elements

(X/ (IRn
∩ cρ)).

Definition 4.2 (Constraint system):

A constraint system is the conjunction of a set of constraints C={c1,…, cp} defined

over a set of variables V={ x1,…, xn }, each variable xi defined over a given domain

Xi of IR.

A constraint system is denoted by S= (V, C, X), where X = X1×…×Xn, and the

corresponding problem to be solved is called a CCSP, usually referred to as CSP. Let

us note that, when this is not ambiguous, we may refer to a CCSP, S= (V, C, X),

simply as C.

The solution set of S is denoted ρS. A solution of S is a n-tuple s ∈ X such that, for

all constraints Cic ∈ , the restriction of s to the variables V
ic of ic belongs to

X
i ci

c j V jxρ ∈∩

 86

Definition 4.3 (Interval Constraint):

An interval constraint is built from an atomic interval formula (interval function) and

relation symbols, whose semantics are extended to intervals as well. ■

A constraint is being defined by its expression (atomic formula and relation symbol),

variables, and their domains. Moreover, it is considered that an interval constraint has

interval variables (variables that take interval values), and that each associated domain

is an interval.

The main guarantee of interval constraint is that if its solution set is empty, it has no

solution over a given box Y; then it follows that the solution set of the COP is also

empty and box Y can be reliably discarded. In a similar manner, if the upper bound of

the objective function range, ()F Y , over a given box Y is less than or equal to the

objective function value of a known feasible solution (the Current Lower Bound,

CLB), then Y can be reliably discarded since it cannot contain a better solution than

the CLB.

Below we formally provide the conditions where a given box Y can be discarded

reliably based on the ranges of interval constraints and the objective function.

In a partitioning algorithm, each box Y is assessed for its optimality and feasibility

status by calculating the ranges for F, G and H over the domain of Y.

Definition 4.4 (Indeterminate box with regard to optimality):

If ()F Y ≤ CLB and ()F Y > CLB, then Y is called an indeterminate box with regard

to optimality. Such a box holds the potential of containing x* if it is not an infeasible

box. ■

 87

A box is called as an indeterminate box with regard to optimality when its objective

function lower bound is less then or equal to the CLB and the upper bound is greater

then CLB.

Definition 4.5 (Indeterminate box with regard to feasibility):

If (()Gi Y < 0 AND ()Gi Y > 0) OR (0∈Hi(Y)≠0) for any i, and other constraints are

consistent over Y, then Y is called an indeterminate box with regard to feasibility and

it holds the potential of containing x* if it is not a sub-optimal box. ■

Definition 4.6 (Cut-off test based on optimality):

If ()F Y < Current Lower Bound (CLB), then box Y is called a suboptimal box and it

is deleted because it cannot contain x*.

Definition 4.7 (Cut-off test based on feasibility):

If ()Gi Y > 0 or 0∉Hi(Y) for any i, then box Y is called an infeasible box and it is

discarded.

Definition 4.8 (Uncertainty of an indeterminate box with regard to optimality):

The degree of uncertainty of an indeterminate box with respect to optimality is

defined as:

PFY = ()F Y − CLB (4.6)

Definition 4.9 (Uncertainty of an indeterminate box with regard to feasibility):

The degree of uncertainty, PGi
Y (PHi

Y) of an indeterminate inequality (equality)

constraint with regard to feasibility is defined by equations (4.7) and (4.8),

respectively.■

 88

PGi
Y = ()Gi Y (4.7)

PHi
Y = ()Hi Y + | ()Hi Y | (4.8)

Definition 4.10 (Total feasibility uncertainty degree of a box):

The total feasibility uncertainty degree of a box, INFY, is the sum of uncertainty

degrees of equalities and inequalities that are indeterminate over Y. ■

Definition 4.11 (Feasible box):

 If ()Gi Y ≤ 0, and 0 ∈ Hi(Y) = 0, for ∀i, then box Y is a feasible box.

4.3. New Interval Partitioning Algorithms

4.3.1. Bound Constrained Optimization Problems

In each box assessment, the function range estimate F (M) over a sufficiently small

box M enclosing the mid-point (m(Y)) is calculated. In the assessment of the first box,

min f(M) becomes the current lower bound (CLB) and each time a better mid-point

solution is found, CLB is updated.

IPA continues to subdivide available pending boxes until either they are all deleted or

interval sizes of all variables in existing boxes are less than a given tolerance, δ. All

such boxes are reported that may contain x*. In Figure 4.1, a generic pseudocode is

provided for IPA.

 89

Notation :

WLB: Working List of Boxes; M : Point interval at the mid-point of a box;

 F(M) : range estimate at M ; δ : tolerance for final interval length

Void IPA:

{

 Construct tree structure for f(x);

 Initialize: initial box = II (X); CLB = -∞; WLB = I I (X);

 While WLB ≠ φ do
 {

 Select a box Y∈ WLB; Calculate F(Y);

 if (()F Y > CLB) AND (At least for one variable interval, w(xi) >δ)

 {

 if (F (Y) > CLB), then CLB = F (Y);

 Calculate the mid-point function value, F(M);

 if (F(M) > CLB), then CLB = F(M);

 Select subdivision direction; // Activate Symbolic Interval Inference Rule;

 Subdivide Y to obtain four sibling boxes: S1, S2, S3, S4; // Multisection - 4 siblings

 WLB = WLB – {Y}; WLB = WLB + {S1, S2, S3, S4};

 } // endif

 else

 {

 if (w(xi)< δ , ∀i), then store Y; WLB = WLB – {Y};
 }

 } // endwhile

 Report all stored boxes;

} // endprocedure

Figure 4.1. Generic pseudocode for IPA.

In essence, IPA aims to discard suboptimal boxes and reduce the number of pending

boxes with as few function calls as possible. This is facilitated by partitioning

appropriate variables and generating sub boxes whose overestimation in PY is reduced.

Then, the algorithm converges fast by discarding suboptimal boxes early and also by

 90

partitioning promising boxes in a fitting direction to reach the global basin of

attraction. While variable selection is made according to this criterion, box selection is

carried out following a worst-first strategy, i.e., the box with the maximum PY is

selected first.

We would like to mention that PY is a traditional box selection index used in IPA. A

normalized version of this index (the Reject Index) is obtained by dividing PY by w

(F(Y)) (Casado et al. 2001a. 2001b). The Reject Index aims at reducing the

overestimation in smaller boxes with greater uncertainty whereas we target at

discarding boxes as large as possible.

4.3.2. Continuous Constraint Satisfaction Problems and Constrained

Optimization Problems

IP is a reliable convergent algorithm that sub-divides indeterminate boxes to reduce

INFY and PFY by nested partitioning. The contraction and the α-convergence

properties enable the reduction in the uncertainty levels. The reduction in the

uncertainty levels of boxes finally lead to their elimination due to sub-optimality or

infeasibility while helping IP in ranking remaining boxes in a better fashion.

In the COP, a box that becomes feasible after nested partitioning still has uncertainty

with regard to optimality unless it is proven that it is sub-optimal. The convergence

rate of IP might be very slow if we require nested partitioning to reduce a box to a

point interval that is the global optimum. Hence, since a box with a high PFY holds

the promise of containing the global optimum, we propose to use a local search

procedure that can identify stationary points in such boxes. In a similar fashion, we

use the local search procedure to identify feasible solutions in indeterminate (with

regard to feasibility) boxes in the CCSP.

 91

In the COP, IP continues to subdivide available indeterminate and feasible boxes until

either they are all deleted or interval sizes of all variables in existing boxes are less

than a given tolerance, δ. Termination can also be forced by limiting the number of

function evaluations and/or CPU time. Here, we choose to terminate IP when the

number of function calls outside the local search procedure reaches a given limit or

when the CPU time exceeds the maximum allowable time. In the CCSP, IP can

terminate either when there are no more indeterminate boxes or when the theoretical

number of feasible solutions is identified. Here, we stop when the number of feasible

solutions identified reaches the theoretically known number of solutions or when a

CPU time limit is reached.

In the following, we describe our proposed IP that has a flexible stage-wise tree

management feature. This stage-wise tree also enables us to apply the best-first box

selection rule within a restricted sub-tree (economizing memory usage) as well as to

invoke local search in a set of boxes.

The tree management system in the proposed IP maintains a stage-wise branching

scheme that is conceptually similar to the iterative deepening approach (Körf 1985).

The iterative deepening approach explores all nodes generated at a given tree level

(stage) before it starts assessing the nodes at the next stage. Exploration of boxes at

the same stage can be done in any order, the sweep may start from best-first box or

the one on the most right or most left of that stage. On the other hand, in the proposed

adaptive tree management system, a node (parent box) at the current stage is

permitted to grow a sub-tree forming partial succeeding tree levels and to explore

nodes in this sub-tree before exhausting the nodes at the current stage. In the COP, if

a feasible solution (CLB) is not identified yet, boxes in the sub-tree are ranked

according to ascending INFY, otherwise they are ranked in descending order of ()F Y .

 92

In the CCSP, boxes are simply ranked according to descending INFY. A box is

selected among the children of the same parent according to either box selection

criterion, and the child box is partitioned again continuing to build the same sub-tree.

This sub-tree grows until the Total Area Deleted (TAD) by discarding boxes fails to

improve in the two consecutive partitioning iterations in this sub-tree. Such failure

triggers a call to local search where all boxes not previously subjected to local search

are processed by the procedure Feasible Sequential Quadratic programming (FSQP)

(Zhou and Tits 1996, Lawrence et al. 1997). The boxes that have undergone local

search are placed back in the list of pending boxes and exploration is resumed among

the nodes at the current stage. In the COP, feasible and improving solutions found by

FSQP are stored (that is, if feasible solutions with a better objective function value is

found, CLB is updated and the solution is stored). In the CCSP, all feasible point

solutions and sub-spaces are stored.

The above adaptive tree management scheme is achieved by maintaining two lists of

boxes, Bs and Bs+1 that are the lists of boxes to be explored at the current stage s and at

the next stage s+1, respectively. Initially, the set of indeterminate or feasible boxes in

the pending list Bs consists only of X and Bs+1 are empty. As child boxes are added to

a selected parent box, they are ordered according to the current ranking criterion.

Boxes in the sub-tree stemming from the selected parent at the current stage are

explored and partitioned until there is no improvement in TAD in two consecutive

partitioning iterations. At that point, partitioning of the selected parent box is stopped

and all boxes that have not been processed by local search are sent to FSQP module

and processed to identify feasible and improving point solutions if FSQP is successful

in doing so. It is noted that, whether or not FSQP fails to find an improving solution,

IP will continue to partition the box since it passes both cutoff tests as long as it has a

 93

potential to contain an improving solution. Finally, the algorithm encloses potential

improving solutions in sufficiently small boxes where FSQP can identify them. Thus,

FSQP acts as a catalyst that occasionally scans larger boxes to identify improving

solutions at the earlier stages of the search. From that moment onwards, child boxes

generated from any other selected parent in Bs are stored in Bs+1 irrespective of further

calls to FSQP in the current stage. When all boxes in Bs have been assessed

(discarded or partitioned), the search moves to the next stage, s+1, starting to explore

the boxes stored in Bs+1.

In this manner, a lesser number of boxes (those in the current stage) are maintained in

primary memory and the search is allowed to go down to deeper levels within the

same stage, increasing the chances to discard boxes or identify stationary points. On

the other hand, by enabling the search to also explore boxes horizontally across at the

current stage, it might be possible to find feasible improving solutions faster by not

partitioning parent boxes that are not so promising (because we are able to observe a

larger number of boxes).

The tree continues to grow in this manner taking up the list of boxes of the next stage

after the current stage’s list of boxes is exhausted. The algorithm stops when the

stopping criteria mentioned above for the COP/ CCSP are satisfied. The proposed IP

algorithm is described below:

IP with adaptive tree management

Step 0. Set tree stage, s=1, and future stage, r=1. Set non-improvement counter for

TAD: nc=0. Set Bs, the list of pending boxes at stage s equal to X, Bs ={X},

and Bs+1=∅.

Step 1. COP: If the number of function evaluations or CPU time reaches a given

 94

limit, or, both Bs=∅ and Bs+1=∅, then stop.

 CCSP: If the theoretical number of solutions is identified or CPU time reaches

a given limit, or, both Bs=∅ and Bs+1=∅, then stop.

Else, if Bs=∅ and Bs+1≠∅, then set s←s+1, set r←s, and continue.

Pick first box Y in Bs and continue.

1.1 If Y is infeasible or suboptimal (in the COP), discard Y, and go to Step

1.

1.2 If Y is sufficiently small, evaluate m, its mid-point, and if it is a

feasible improving solution, update CLB, re-set nc ←0, and store m.

Remove Y from Bs and go to Step 1. (In the CCSP, omit the CLB update

and store the feasible solution.)

1.3 Else go to Step 2.

Step 2. Select variable(s) to partition (use the subdivision direction selection rule

IIR). Set v = number of variables to partition.

Step 3. Partition Y into 2v non-overlapping child boxes. Check TAD, if it improves,

then re-set nc ←0, else set nc ← nc +1.

Step 4. Remove Y from Bs, add 2v boxes to Br.

4.1. If nc >2, apply FSQP to all (previously unprocessed by FSQP) boxes

in Bs and Bs+1, re-set nc←0. If FSQP is called for the first time in stage

s, then set r←s+1. Go to Step 1.

4.2. Else, go to Step 1. ■

The adaptive tree management system in IP is illustrated in Figure 3.4 on a small tree

where node labels indicate the order of nodes visited.

 95

4.4. Framework of Interval Inference Rule (IIR)

4.4.1. General Overview

The order in which variable domains are partitioned has an impact on the performance

of IP. In general, variable selection is made according to widest variable domain rule

or largest function rate of change in the box. Here, we develop a new numerical

subdivision direction selection rule, Interval Inference Rule (IIR), to improve IP’s

performance by partitioning in parallel, those variable domains that reduce PFY and

INFY in at least one immediate child box. (The related illustration of the latter

reduction and exceptional situations where such reduction may not be achieved are

found in the section 4.6 of this chapter.) Hence, new boxes formed with an

appropriate partitioning sequence result in diminished uncertainty caused by

overestimation. Before IIR is applied, the objective f and each constraint g and h are

interpreted as binary trees that represent recursive sub-expressions hierarchically.

Such binary trees enable interval propagation over all sub-expressions of the

constraints and the objective function (Benhamou et al. 1994). Interval propagation

and function trees are used by Kearfott (1991) in improving interval Newton approach

by decomposition and variable expansion, by Smith and Pantelides (1999) in

automated problem reformulation, by Sahinidis (2003) and by Talawarmani and

Sahinidis (2004) where feasibility based range reduction is achieved by tightening

variable bounds.

After interval propagation is carried out over the sub-expressions in a binary tree, IIR

traverses this tree to label its nodes so as to identify the pair of variables (source

variables) that are most influential on the constraint’s or the objective’s uncertainty

degree. This pair of variables are identified for each constraint and the objective

 96

function, and placed in the pool of variables whose domains will be possibly

partitioned in the next iteration. In the COP, we make sure that the pool at least

contains the source variables for the objective function and therefore, the number of

variables to be bisected in parallel is at least two. The total pool resulting from the

traversal of f, g and h is screened and its size is reduced by allocating weights to

variables and re-assessing them.

4.4.2. Interval Inference Rule

The IIR Framework comprises of six basic components such as Parser, Interval

Inference Rule Base, IA partitioning coordinator, Interval Arithmetic Library, Local

Search Methods, and Branching Master. The integrated framework of IIR is illustrated

in Figure 4.2 and the detailed description of each component is given as follows.

 97

Figure 4.2. Integrated Framework of Interval Inference Rule

 98

1. Parser

The parser is activated once before IPA is executed. It dissects the function expression

and passes the output to the tree builder. The parser comprises of three sub-

components: Expression parser, Expression translator, and Binary tree builder shown

in Figure 4.3.

Figure 4.3. Sequence of parser functions

i. Expression Parser parses a given infix expression into machine understandable

format as array of strings. It converts variable domains (x = [X , X]) into VarName

(x), and VarValues ([X , X]). Expression parser also parses each constraint into three

parts that are constraint expression, type of constraint (direction of inequality or

equality), and the right hand side constant. The objective function is parsed into two

parts, type of objective function, i.e., minimization (min) or maximization (max), and

objective function expression.

ii. Expression Translator converts infix expressions obtained from Expression

parser into post-fix expressions and passes the post-fix expressions to the tree

builder.

iii. Binary Tree Builder

The binary tree builder constructs a binary tree using the information obtained from

the parser. A binary tree that represents the function with all its subexpressions is then

constructed. The contribution of subexpressions and atomic elements (variables) to

Function
f(x) or g(x)

or h(x)
and x

domain

Expression
parser

Expression
translator

Binary tree
builder

 99

the function range are recursively calculated by calling an Interval Library at each

(molecular) level of the hierarchical binary tree so that the impact of all terms can be

assessed in descending order of complexity.

2. Interval Inference Rule Base

Interval Inference Rule Base is designed for identifying the variables to be re-

partitioned for each constraint and objective functions whichever is applicable for a

given optimization problem. The identified variables will be returned to IA

partitioning coordinator for further processing. It comprises of two basic procedures:

Interval propagation over a binary tree and IIR labeling procedure.

a. Interval Propagation over a Binary Tree

Before the labeling process can be applied on a constraint expression, it has to be

parsed and converted into a binary tree where intervals at sub-expression levels are

calculated in a bottom to top fashion starting from atomic levels (variables or

constants).

A binary tree representing a constraint is built as follows. Leaves of the binary tree are

atomic elements, i.e., they are either variables or constants. All other nodes represent

binary expressions of the form (Left Θ Right). A binary operator is an arithmetic

operator (*, +, -, /) having two branches (“Left”, “Right”) that are themselves

recursive binary sub-trees. However, mathematical functions such as ln, exp, sin, etc.

are unary operators. In such cases, the argument of the function is always placed in

the “Left” branch. For instance, the binary tree for the expression in equation (4.9) is

illustrated in Figure 4.4.

1-((10*x1)+(6*(x1*x2))-(6*(x3*x4))) (4.9)

Variable intervals in the box are X1 = [-2.0, 4.0], X2 = [0.0, 10.0], X3 = [-2.0, 1.0], and

 100

X4 = [-10.0, 0.0]. In Figure 4.4, dotted arrows linking arguments with operator nodes

show how intervals are propagated starting from the bottom leaves (variables). Once a

level of the tree is completed and corresponding sub-expression intervals are

calculated according to basic interval operations, they are linked by next level

operators. This procedure goes on until the top most “root” node representing the

whole constraint is reached resulting in the constraint range of [-339, 261].

Figure 4.4. Interval propagation for the expression

“1-((10*x1)+(6*(x1*x2))-(6*(x3*x4)))”.

b. IIR Labeling Procedure

Suppose a binary tree is constructed for an expression and its source variables are to

be identified over a given box Y. This is accomplished by a labeling procedure via

tree traversal. Let us assume the expression given in the equation (4.9) is an equality

constraint. In Figure 4.5, the path constructed by IIR is illustrated graphically on the

constraint given in equation (4.9). Straight lines in the figure indicate the propagation

tree, dashed arrows indicate binary decisions, and bold arrows indicate the path

 101

constructed by IIR.

Figure 4.5. Implementation of IIR_Tree over the binary tree for
“1-((10*x1)+(6*(x1*x2))-(6*(x3*x4)))=0”

For illustrating how IIR works on a given constraint over domain Y, we introduce the

following notation.

Dk: a parent sub-expression at tree level k (k=0 is root node),

Lk+1 and Rk+1: immediate Left and Right sub-expressions of Dk at level k+1,

,[]k kD D : interval bounds of parent sub-expression Dk ,

1 1,[]k kL L+ + and 1 1,[]k kR R+ + : interval bounds of immediate left and right sub-

expressions at level k+1, and

Λk: labeled bound at level k.

IIR starts by labeling 0D if the expression is an inequality constraint or the expression

is an objective function. The target is ()Gi Y for inequalities so as to reduce PGi
Y,

 102

and in equalities the target is the max {| 0D |, 0D } (i.e., max { ()H i Y , ()Hi Y } is

targeted to reduce PHi
Y).

In summary,

Type of Expression Target at root node

Objective Function (Maximization) 0D i.e., ()F Y

Inequality constraint (≤) 0D i.e., ()Gi Y

Equality constraint (=)
max {| 0D |, 0D }

(i.e., max { ()H i Y , ()Hi Y }

Suppose, we have an equality constraint in equation (4.9), we label the bound that

gives max {⏐-339⏐, ⏐261⏐], that is, we label “-339” as Λ0 at the root node. Next, we

determine the pair of interval bounds 1 1{ }L R− which results in “-339”. Hence,

1 1L RΘ = 0D . We then compare the absolute values of individual bounds in this pair

and take their maximum as the label at level k+1. That is, Λ1=max {|
1

L |, |
1

R |} =
1

R =

340. A formal description of IIR rule is given in a pseudocode in Figure 4.6.

The procedure is applied recursively from top to bottom; each time searching for the

bound pair resulting in the labeled bound Λk+1 till a leaf (a variable) is hit. Once this

forward tree traversal is over, all leaves in the tree corresponding to the selected

variable are set to “Closed” status. The procedure then backtracks to the next higher

level of the tree to identify the other leaf in the couple of variables that produce the

labeled bound. IIR_Tree’s pseudocode is given in Figure 4.7.

 103

Node_Type IIR _Tree (Node_Type Start_Node) {
 If ((Count>2) OR (All leaves are “Closed”)) exit;
 Select_Node = IIR (Start_Node); /*calls procedure IIR */
 If (Select_Node. Status = “Open Node”)
 Start_Node = IIR_Tree(Select_Node);
 Else if (Select_Node. Status = “Open Leaf”) /*found a source variable*/
 {
 Store source variable “Open Leaf”;

 Close all leaves of type “Open Leaf”;
 Count++;
 Start_Node = IIR_Tree (Next_Up(Select_Node)); /*backtrack to identify
second source*/
 }
 Else Start_Node = IIR_Tree (Next_Up(Select_Node)); /*backtrack to identify
second source*/
 Return Start_Node;
}

Figure 4.6. Procedure IIR _Tree: Recursive tree traversal of IIR.(Input: Root node;
Output: pair of source leaves - variables)

Node_Type IIR (Node_Type Node) {
 if (node_level k = 0), bnd = ()G Y ; /* if equality bnd = max { ()iH Y , ()iH Y }

 if objective function bnd = ()F Y */
 else bnd = Λk;
 Identify the pair a Θ b =
 { 1 1{ }k kL R+ +Θ ∨ 1 1{ }k kL R+ +Θ ∨ 1 1{ }k kL R+ +Θ ∨ 1 1{ }k kL R+ +Θ } : a Θ b = bnd;
 Λk+1 = max {|a|, |b|};
 if Λk+1

 = | a |, then return Left branch node as labeled at level k+1;
 else then return Right branch node as labeled at level k+1;
 }

Figure 4.7. Pseudocode for IIR (Input: node at level k; Output: labeled node at level

k+1)

All steps of the labeling procedure carried out in the example are provided below in

detail.

Level 0: 0 0[,]D D = [-339, 261]. Λ0 = 0D .

 104

a Θ b = 1 1L R− = {1-340} = -339. Λ1 = max {|
1

L |, |
1

R |} = max {|1 |, |340|} = 340

=
1

R .

Level 1: 1 1[,]D D = [-260, 340]

a Θ b = {-20+(-240) or 40+300} = 340 ⇒ a Θ b=
2 2L R+ . Λ2 = max {|

2
L |, |

2
R |}

= max {|40|, |300|} = 300 ⇒
2

R .

Level 2: 2 2[,]D D = [-240, 300]

a Θ b = { (-120)-120 or 240-(-60) } = 300 ⇒ a Θ b=
3 3L R− . Λ3 = max {|

3
L |, | 3R |}

 = max {|240|, |-60|} = 240 ⇒
3

L .

Level 3: 3 3[,]D D = [-120, 240]

a Θ b = {6*(-20) or 6*40 } = 240 ⇒ a Θ b=
4 4
*L R . Λ4 = max {|

4
L |, |

4
R |}

 = max {|6|, |40|} = 40 ⇒
4

R .

Level 4: 4 4[,]D D = [-20, 40]

a Θ b = {-2*0 or -2*10 or 4*0 or 4*10 } = 40 ⇒ a Θ b=
5 5
*L R . Λ5

= max {|
5

L |, |
5

R |} = max {|4|, |10|} = 10 ⇒
5

R .

The bound
5

R leads to leaf x2. The leaf pertaining to x2 is “Closed” from here

onwards, and the procedure backtracks to Level 4. Then, the labeling procedure leads

to the second source variable, x1.

Note that the uncertainty degree of the parent box is 600 whereas when it is sub-

divided into four sibling boxes by bisecting the two source variables, the uncertainty

degrees of sibling boxes become 300, 330, 420, and 390. If the parent box were sub-

divided using the largest width variable rule (x2 and x4), then the sibling uncertainty

degrees would have been 510, 600, 330 and 420.

 105

3. IA Partitioning Coordinator

The binary tree structure is transferred to the Interval Inference Rule base component

for identifying the subdivision direction selection through the IA partitioning

coordinator. It also coordinates the activities between the components such as

Branching Master, Interval Library, Local Search Methods (FSQP), Working List

Box (WLB), Feasible or Pending Box Repository (FBR / PBR), and Discard Bin. IA

Partitioning Coordinator comprises of five sub-components such as Box Ranker, Tree

Selector, Termination rule, variable screener, and box discarder.

i. Box Ranker

The sibling boxes generated from the Branching Master will be returned to the IA

Partitioning Coordinator for inserting into the WLB. The Box ranker subcomponent is

designed to rank the WLB based on the following box ranking strategies:

1. Ranking Based on Degree of Uncertainty

This strategy is applicable for BCOP and CCSP problems. The degree of uncertainty

is defined as the PFY and TINFY for BCOP and CCSP problems respectively.

Degree of uncertainty with regard to optimality: PFY = ()F Y − CLB

Degree of uncertainty of an inequality constraint: PGi
Y = ()Gi Y

Degree of uncertainty of an equality constraint: PHi
Y = ()Hi Y + | ()Hi Y |

Total degree of uncertainty: TINFY = ∑ i∈ all pending constraints(PGi
Y + PHi

Y)

where

F, G, H : the objective function, inequality and equality constraints respectively.

CLB : Current Lower bound

 106

In case of Worst-first box selection strategy, the box with maximum degree of

uncertainty will be selected for re-partitioning in the next iteration. However, in case

of best-first strategy, a box with minimum degree of uncertainty will be selected for

re-partitioning in the next iteration.

2. Ranking Based on Single Criterion

This strategy is applicable only to COP problems. The boxes are ranked based on the

following criteria:

Criteria 1: If there is an initial feasible solution found for the given COP problem, and

then sort the boxes in descending order of ()F Y . However, ties in ()F Y are resolved

according to the minimum TINFY.

Criteria 2: If there is no initial feasible solution found for the given COP problem,

then sort the boxes in ascending order of TINFY. However, ties in TINFY are resolved

according to the maximum ()F Y .

3. Ranking Based on Static Penalty

This strategy is applicable only to COP problems. The boxes are ranked based on the

following merit function value:

Merit function value (MFV)= | ()F Y | + ∑ i∈ all pending constraints(PGi
Y)2 + (PHi

Y)2

According to this strategy, sort the boxes in the descending order of MFV.

ii. Tree Selector

Tree Selector subcomponent will influence the extent of repartitioning of a new box

picked up from working list (WLB) and is based on the following tree management

systems:

 107

1. Worst-first Tree Management

This box selection strategy is applicable for BCOP, and CCSP.

According to this tree management, the boxes are selected based on the maximum PY

and maximum TINFY for BCOP and CCSP respectively.

2. Best-first Tree Management

This box selection strategy is applicable only for COP. The box selection is carried

out following a best-first strategy, i.e., the box with the least merit function as defined

in the Box ranker is selected first. A detailed description of the above tree

management system is provided in the previous chapter (i.e., Chapter 3 under Pure

Heuristic Search).

3. Depth-first Tree Management

This strategy is applicable only for COP and CCSP. A detailed description of the

above tree management system is provided in the previous chapter (i.e., Chapter 3

under Depth-First Search).

4. New Iterative deepening (applicable for COP and CCSP)

This strategy is applicable only for COP and CCSP. A detailed description of the

above tree management system is provided in the previous chapter (i.e., Chapter 3

under Adaptive tree management).

iii. Termination Rule

The Termination Rule plays an important role in IPA to obtain solutions which are

close to the actual solutions. This sub-component defines the constraint satisfaction

tolerance, box elimination tolerance, maximum CPU time allocation, and the

 108

Separation distance between solutions. This particular is responsible for termination

of a given algorithm defined for solving BCOP, CCSP and COP problems.

In case of bound constrained optimization problems, a run is completed when for all

non-discarded pending boxes the difference of the function upper bound over the box

to the current lower bound (|CLB – ()F X |) is less than 1 x 10-13.

The other termination options are:

Box elimination tolerance : 0.0

Maximum CPU time allowed (seconds) : 300 seconds on 2 GB RAM, 2.4 GHz

Intel Xenon CPU, under Windows OS system.

In case of CCSP, a run is completed when all solutions or a user defined number of

solution for a given constraint system is found or the indeterminate boxes list (i.e., all

non discarded pending boxes list) size equals to zero.

The other termination options are:

Box elimination tolerance : 0.0

Maximum CPU time allowed (in STU’s) : 0.771 Standard Time Units (STU)

The other options are:

Maximum of subdivision direction selected : 8

Constraint satisfaction tolerance : ≤ 1E-8

Separation distance between solutions : ≥1E-6

In case of COP, a run is completed when the number of function evaluation reaches

2000*(Dimension of the problem + Total number of constraints) or the indeterminate

boxes list size equals to zero.

 109

The other termination options are:

Box elimination tolerance : 0.0

Maximum CPU time allowed (in STU’s) : 2.827 Standard Time Units (STU)

(Note: 1 Standard Time Unit = (CPU Time in seconds for a given problem / Time

required to complete the Shekel CPU (Törn and Zilinskas 1989, Scherbina et al.

2002))

The other options are:

Maximum of subdivision direction selected : 6

Constraint satisfaction tolerance : less then or equal to 1E-6

Separation distance between solutions : greater then or equal to 1E-6

iv. Variable Screener (Applicable for COP and CCSP)

The variables identified for each constraint and objective function (if applicable) by

the Interval Inference Rule Base will be transferred back to the IA Partitioning

Coordinator and to a list. The list of selected subdivision directions is re-screened by a

Symbolic priority allocation defined as follows.

In case of CCSP:

IIR is applied to every constraint in the CCSP to identify a pair of source variables for

each. The resulting set of variables, denoted by V, might be large, leading to a wide

set of sibling boxes generated in parallel. We develop a symbolic priority allocation

scheme to narrow down the size of V. A weight wj is assigned to each variable xj∈ V

and the average w is calculated. The final set of variables to be re-partitioned in the

next iteration of IPA is composed of all xj∈ V with wj > w . However, the maximum

 110

number of variables that can be selected for re-partition must be less then or equal to

six and eight for COP and CCSP respectively.

Here, wj is defined as a function of several criteria: PGi
Y (PHi

Y) of constraint gi for

which xj is identified as a source variable, the number of times xj exists in gi, and total

number of interactive terms in which xj is involved within gi. Furthermore, the

existence of xj in a trigonometric and even power sub-expression in gi is included in

wj by inserting corresponding flag variables. When a variable xj is a source variable to

more than one constraint, the weight calculated for each such constraint is added to

result in a final wj, defined in equation (4.10).

[/ / / /] / 5max max
i iw PH PH PG PG e E a A t pi ICj ji j ji j ji jiY Yj= + + + + +∑ ∈

 (4.10)
where:

ICj : set of indeterminate constraints (over Y) where xj is a source variable,

TIC : total set of indeterminate constraints,

PHmax : { }imax PH Y
i TIC∈

,

PGmax : { }imax PG Y
i TIC∈

,

eji : number of times xj exists in constraint i∈ICj,

Ej : { }max e ji
i ICj∈

,

aji : number of interactive terms xj is involved in constraint i∈ICj,

Aj : { }

j

max a ji
i IC∈

,

tji : binary parameter indicating that xj exists in a trigonometric or non-

polynomial expression in constraint i∈ICj, and

pji : binary parameter indicating that xj exists in an even power or abs

expression in constraint i∈ICj.

This weighting method is illustrated on a CCSP with 4 variables and 3 equalities. The

first constraint is the expression given in equation. (4.9). The other two constraints are

 111

provided in equations (4.11) and (4.12). Variable domains are as listed for equation

(4.9).

(6*(x1*x4))+(6*(x2*x3))- (10*x3)-4 = 0 (4.11)

(sin(x1*x2)*cos((x1
2)-x2))+ (x1* x4) = 0 (4.12)

In Table 4.1, we provide a tabulated summary of symbolic characteristics pertaining

to each variable and each constraint. This information is used in calculating wj.

The pairs of maximum impact variables found for each constraint are (x1, x2), (x1, x4)

and (x1, x4) for the first, second and third constraints, respectively. The set V consists

of { x1, x2, x4}. A sample weight calculation for x1 in the first constraint is given as

6 0 0 2 1 0 0
6 0 0 3 3 1 1 0 .4

5

⎛ ⎞+ + + +⎜ ⎟
=⎜ ⎟

⎜ ⎟
⎝ ⎠

.

 Constraint
No. (i) xj eji aji pji tji [(Y), (Y)]H Hi i iPH Y

x1 2 1 0 0
x2 1 1 0 0
x3 1 1 0 0 Constraint 1

x4 1 1 0 0

[-339,261] 261+339=600

x1 1 1 0 0
x2 1 1 0 0
x3 2 1 0 0 Constraint 2

x4 1 1 0 0

[-374,196] 374+196=570

x1 3 3 1 1
x2 2 2 0 1
x3 0 0 0 0 Constraint 3

x4 1 1 0 0

[-41,21] 41+21=62

Table 4.1. Summary of symbolic characteristics pertaining to each variable and each
constraint

The weight calculation of each variable in each constraint and their final weights are

indicated in Table 4.2.

 112

Variable Weight in
Constraint 1

Weight in
Constraint 2

Weight in
Constraint 3

Total Variable
Weight (wj)

x1 0.4 0.32 0.82 1.54
 x2 0.40 0.59 0.42 1.41
 x4 0.60 0.59 0.42 1.61

Average weight 1.521

Table 4.2. Weight calculation of each variable in each constraint and their final

weights

Consequently, (x1, x4) are selected for re-partitioning. This results in three sibling

boxes whose sum of IFY is indicated in bold in the table below (2nd column). One

sibling box is found to be infeasible and discarded.

For comparison purpose, we also show the sum of IFY over sibling boxes that would

result from re-partitioning other pairs of variables. It is observed that total IFY of the

pair (x1, x4) is lower than all other variable couples.

Selected variables (x1, x4) (x1, x2) (x1, x3) (x2, x3) (x2, x4) (x3, x4)

Total IFY of sibling
boxes

2141 3088 2758 3786 3778 3728

In case of COP

In each indeterminate box assessment, IIR is applied to every constraint in the COP to

identify a pair of source variables. The resulting set of variables, denoted by V. In

addition to that, if there is an initial feasible solution found then the IIR is applied to

the objective function in the COP to identify a pair of source variables, denoted by Vs.

However, in each feasible box assessment, IIR is applied to only objective function in

the COP to identify a pair of source variables, denoted by Vs.

 The resulting set of variables, denoted by V, might be large, leading to a wide set of

sibling boxes generated in parallel. The symbolic priority allocation scheme defined

as above is applied to narrow down the size of V, and the maximum of number of

 113

variables selected from V is (6-size of Vs), denoted by Vf. The final set of variables

selected for re-partitioning the box assessment is the set of Vf and Vs.

v. Box Discarder (Applicable for COP and BCOP)

The Box discarder sub-component is designed for COP and BCOP problems. The

main purpose of this component is to discard the sub-optimal boxes from the list of

indeterminate boxes to Discard Bin. This can also be called as cut-off test based on

optimality.

The cut-off test is performed based on the following criterion:

Criteria 1: A box is said to be discarded if the difference of the function upper bound

over the box to the current lower bound (|CLB – ()F X |) is less than 1 x 10-13.

Criteria 2: A box is said to be discarded if the function upper bound over the box is

strictly less than the current lower bound (()F X < CLB).

4. Interval Arithmetic Library

IA partitioning coordinator calls the Interval Arithmetic Library (Profil / Bias) to

perform the interval arithmetic operations to calculate the expression and

subexpression at each level of hierarchical binary tree. The information obtained from

the Interval Arithmetic Library will be transferred to the Interval Inference Rule Base

for the selection of the subdivision directions.

5. Local Search Method (FSQP)

IA partitioning coordinator triggers a call to Local Search Method where all boxes not

previously subjected to local search are processed by the Feasible Sequential

Quadratic programming procedure when the Total Area Deleted (TAD) by discarding

boxes fails to improve in the two consecutive partitioning iterations in a given sub-

 114

tree. The solution identified by the Local Search Method will be stored in FBR / PBR

through the IA partitioning coordinator.

6. Branching Master

The IA partitioning coordinator activates the Branching Master for implementing the

selected subdivision direction. Once sibling boxes are generated, they are returned to

the IA partitioning coordinator for placement in the Pending/Feasible Box Repository,

PBR/FBR, or discarded if infeasible. WLB is also updated if sibling boxes are fit to be

re-partitioned.

The proposed interval subdivision direction selection rules can be well inserted into

the directed acyclic graph framework developed by the COCONUT project (Schichl

and Neumaier 2005).

4.5. New variant of IIR (IIR_Widths)

As an alternative to the above described rule, IIR, we have also developed another

rule (called IIR_Widths), that chooses that branch of the computation tree which has

the largest width of the expression inclusion related to the given node. In case the two

widths are equal, we follow the branch, which belongs to the above given symbolic

inference. This new variant is implemented for solving bound constrained

optimization problems.

Let us consider the following expression given in equation (4.13) for illustration of

IIR and IIR_Widths on bound constrained optimization problem:

1 2 3 4 1 3(()*()) ()x x x x sin x x+ + + + (4.13)

 115

4.5.1. An Illustration of IIR and IIR_Widths Procedures

Suppose we have the example given in Figure 4.8 with the expression interval [-166,

451]. Then, “451” is selected as the labeled bound Λ0 at the root node. In IIR, we next

determine which pair of interval bounds ({ + }1 1L R , { }1 1L + R , { }1 1L + R , { }1 1L + R)

results exactly in 0D . The pair of interval bounds that provides 451 is (450, 1) since

“450+1= 451”. Hence, Θ1 1L R = 0D . We then compare the absolute values of individual

bounds in this pair and take their maximum as the label at level k+1. Λk+1=max

{ 1 1L ,R }= 1L = 450. All steps of IIR_Tree for IIR and IIR_Widths are provided below in

detail and decisions are illustrated in Figures 4.8 and 4.9 with bold arrows

respectively.

Figure 4.8. Demonstration of the run of IIR on the ((x1+x2)*(x3+x4)) + sin (x1+x3)

 116

Figure 4.9. Demonstration of the run of IIR_Widths on the ((x1+x2)*(x3+x4)) + sin (x1+x3).

In case of IIR, this leads to 3R , a bound of leaf x2. The leaf pertaining to x2 is

“Closed” from here onwards, and the procedure backtracks to Level 2. Then, IIR leads

to the second source variable, x1.

IIR IIR_Widths

Level 0: []0 0D ,D = [-166, 451]

Λ0 = 0D .

a Θ b = {(-165+1) or (450+1) or (-165-1) or
(450-1) }

 = 451.

Hence, a Θ b= 1 1
L + R , and

Λ1 = max {| 1L |, |
1

R |} = max {|450 |, |1|}

 = 450 = 1L .

Level 1: []1 1D ,D = [-165, 450]

a Θ b = {(-11*2) or (30*2) or (-11*15) or
(30*15)}

Level 0: []0 0D ,D = [-166, 451], Λ0 = 0D .

w(L1) = 615 and w(R1) = 2. Hence,

Λ1 = max { w(L1), w(R1) } = 615 = L1.

Level 1: []1 1D ,D = [-165, 450]

w(L2) = 41 and w(R2) = 13.

Λ2 = max { w(L2), w(R2) } = 41 = L2.

Level 2: []2 2D ,D = [-11, 30]

w(L3) = 11 and w(R3) = 10.

Λ3= max { w(L3), w(R3) } = 11 = L3.

 117

 = 450

⇒ a Θ b = 2 2
L * R ,

Λ2 = max {| 2L |, |
2

R |} = max {|30|, |15|} =
30 ⇒ 2L .

Level 2: []2 2D ,D = [-11, 30]

a Θ b = {(-1-10) or (-1+20) or (10+20) or
(10-10)}

 = 30

⇒ a Θ b = 3 3
L + R ,

Λ3 = max {| 3L |, | 3R |} = max {|10|, |20|} =
20 ⇒ 3R .

In case of IIR_Widths, this leads to L3, a bound of leaf x1. The leaf pertaining to x1 is

“Closed” from here onwards, and the procedure backtracks to Level 2. Then,

IIR_Widths leads to the second source variable, x2.

As a final remark on this example, we would like to mention that the two 2-best

parallel gradient based rules from the literature (Berner 1996) (Rules B/C) select x2

and x4 in parallel for re-partitioning this box. This results in a 10% lower reduction in

the total pending status of all four siblings as compared to the reduction achieved by

IIR and IIR_Widths.

4.6. Convergence Proof of IIR

Remarks 4.1 and 4.2 discuss even power, abs and trig operators where IIR cannot

label an interval bound at level k+1 symbolically if some ambiguous conditions hold

on sub-expression intervals at relevant levels of the binary tree. Remark 4.3 indicates

two exceptional cases for interval multiplication operator. Remark 4.4 shows that IIR

symbolically identifies the correct pair of candidate bounds resulting in Λk at any tree

level k as long as the ambiguities indicated in remarks 4.1, 4.2 and 4.3 do not exist in

 118

a constraint expression.

It is noted that a variable can be a source variable for partitioning the parent box’s

domain only if its width exceeds a tolerance size. We assume throughout the

following proofs that the given constraint’s calculated interval is finite.

Remark 4.1.

Let the operator at any level k of a binary tree be Θ = “^m” (m is even) or Θ = “abs”,

and let Λk = kL = 0. Further, let 1kL + < 0. Then, IIR may not be to identify Λk+1.

The remark is described by providing a counter example showing that IIR cannot

identify Λk+1 when the operator at level k is even power and Λk = 0. Suppose at level

k, we have the interval [0, 16] and Λk = kL =0. The operator at level k is ^2. Since

“power” is a unary operator, there is a single Left branch to this node at level k+1.

The Left branch at level k+1 has a sub-expression interval [-4, 2]. It is obvious that

neither 1kL + nor 1kL + results in Λk. ■

Remark 4.2.

Let trig denote any trigonometric function. Define maxtrig and mintrig as the

maximum and the minimum values trig can take during one complete cycle. Further,

let the operator at any level k of a binary tree be Θ = “trig”, and maxtrig ∈[kL , kL]

or mintrig ∈[kL , kL]. Then, IIR may not be able to identify Λk+1.

Similar to remark 4.1, a counter example is provided to describe it. Suppose we have

Θ = “sin” operator at level k and the interval [kL , kL]= [0.5, 1]. The interval of the

unary Left branch at level k+1 is [1kL + , 1kL +] = [π/6, 2π/3]. Both 1kL + and 1kL + might

result in kL and none result in kL . ■

 119

Remark 4.3.

Suppose the interval operator at a given level k is “ ' '◊ = × , and,

1 1 1, ,1 1 1 1 100 , , andk k kk k k k kL R L R L R R L+ + += =+ + + + +>< . Then, IIR might not be

able to label a bound in the right or left sub-trees at level k+1.

It is sufficient to show a counter example for IIR’s labeling procedure. Suppose ‘× ’

type of interval operation exists at level k, with Lk+1=[-1,2] and Rk+1= [-2,1]. Then, at

level k the × operator’s interval is [-4, 2]. If the labeled bound is 2 at level k, then

both 1 1 1 1 2k k k kL R L R+ + + +× = × = and we cannot choose among the two pairs of

bounds at level k+1 that both provide the labeled bound at level k. ■

Remark 4.4 (Illustration of reduction in uncertainty).

For constraint expressions excluding the ambiguous sub-expressions indicated in

remark’s 4.1, 4.2 and 4.3, IIR identifies the correct couple of bounds at level k+1 that

result exactly in Λk at level k.

This remark is true by monotonicity property of elementary interval operations and

functions. ■

Theorem 4.1 states that unless ambiguous sub-expressions indicated in remark’s 4.1,

4.2, and 4.3 exist in a constraint expression ic or an objective function f, partitioning a

source variable identified by IIR in a parent box Y guarantees immediate reduction in

the labeled bound of ic or f at the root level of the binary tree, and hence, a reduction

in the degrees of uncertainty (PGi
Y , PHi

Y, or PFY) of at least one immediate child box.

The proof of Theorem 4.1 relies on inclusion isotonicity and symbolic processing.

Theorem 4.1.

Suppose a given constraint gi(x) or hi(x), or an objective function f does not contain

 120

the sub-expression types indicated in remarks 4.1, 4.2 and 4.3. Let Y be a parent box

whose domain is partitioned by at least one source variable identified by IIR and let St

be its children. Then, PGi
St < PGi

Y , or PHi
St < PHi

Y , or PFSt < PFY for at least one

child St.

Proof:

First, we show that there is an immediate guaranteed reduction in the uncertainty

degrees of three children St, t=1,..,3, assuming that there are two source variables,

,Y Y
r mx x , identified by IIR in box Y for a given constraint gi(x). We define S1, S2, S3 and

S4 as four children produced by the parallel bisection of these two source variables.

We denote intervals of Y
rx and Y

mx in box Y as: I [X , X]
YYY
rrr = and I [X , X]

YYY mmm = ,

respectively. Variable domains in a given child are denoted by IS
j , j=1,2,...,n. We

assume that ,,S Y
j jI I j r m= ∀ ≠ . In Table 4.3, all child domains are listed.

Let X
Y
r and X

Y
m be identified as most contributing source bounds to ()iG Y . Below,

we show that
t

i i
S YPG PG< for children S1, S2 and S3, and that

4
i i
s YPG PG= . (The proof

techniques for hi(x) or f(x) are similar, therefore omitted.)

Sibling IS
r IS

m
S1 [X ,X (I) / 2]Y Y Y

r r rw+ [X ,X (I) / 2]Y Y Y
m m mw+

S2 [X (I) / 2,X]
YY Y rr rw+ [X , X (I) / 2]Y Y Y

m m mw+

S3 [X ,X (I) / 2]Y Y Y
r r rw+ [X (I) / 2,X]

YY Y mm mw+

S4 [X (I) / 2,X]
YY Y rr rw+ [X (I) / 2,X]

YY Y mm mw+

Table 4.3. Domain Boundaries of Sibling Boxes

 121

Case S1:

Based on child domains defined in Table 4.3, S1 ⊆ Y. Then, by inclusion isotonicity,

1(()) (())i iw G S w G≤ Y and () ()1G S G Yii ≤ . Further, since 1X X
S Y

rr ≠ and 1X X
S Y

mm ≠ ,

then, 1() ()i iG S G≠ Y .

From the above, 1() ()i iG S G< Y holds as strict inequality which leads to
1

i
SPG < i

YPG .

One can show by similar reasoning that
2

i
SPG < i

YPG and
3

i
SPG < i

YPG . However,

4

i
SPG = i

YPG , because 4X X
S Y

rr = and 4X X
S Y

mm = .

The above proof is applicable to all bound combinations (four in total) of contributing

source bounds other than (X , X
S S

mr) pair. In each case, three of the children result in

reduced
t

i
sPG .

When only one source variable is partitioned and two children are obtained, then, S1 is

guaranteed to have reduced
1

i
sPG . ■

We now describe supporting rules that are applied by IIR in case labeling ambiguities

described in remark 4.1 and 4.2 arise during tree traversal. For the exceptional case

found in remark 4.3, the choice in the two pairs of bounds is arbitrary.

Corollary 4.1.

Let there exist a sub-expression of the type indicated in Remark 4.1 at level k of a

binary tree with Λk = kL =0 and interval bound at level k+1, 1kL + < 0. The bound

labeling rule to be applied by IIR at level k+1 is Λk+1 = 1kL + . This rule supports IIR’s

reduction of INFY or PFY.

 122

Proof:

Under the conditions indicated in remark 4.1, labeling 1kL + at level k+1, results in

the selection of the bound pair targeting 1kL + at level k+2. The binary sub-tree below

level k is analogous to the full constraint binary tree, and by induction, the principle of

identifying the correct bound pair in that sub-tree (Remark 4.4) for reducing | 1kL + | is

valid as proved in Theorem 4.1. Hence, source variable pair selected by IIR (using

this rule) in forthcoming partitioning iterations target | 1kL + |. Then, | 1kL + | → 0+, that

eliminates the ambiguity problem at level k, after which Theorem 4.1’s guarantee of

immediate (or in next iteration) reduction in INFY or PFY
 holds. ■

Corollary 4.2.

Let there exists a trig type sub-expression at level k of a binary tree with

maxtrig ∈[kL , kL] or mintrig ∈[kL , kL]. The bound labeling rule to be applied by

IIR at level k+1 is Λk+1 = max {| 1kL + |, | 1kL + |}. This rule supports IIR’s reduction of

INFY or PFY.

Proof:

Similar to the proof of Corollary 4.1, setting Λk+1 = max {| 1kL + |, | 1kL + |} targets at

finding (in the corresponding sub-tree) the source variables that reduce the part of the

interval containing the maximum number of repetitive trigonometric cycles. The

ambiguity at level k is resolved in forthcoming partitioning iterations when [kL , kL]

excludes maxtrig or mintrig. ■

 123

Theorem 4.2.

The IPA algorithm is convergent both with the IIR and with the IIR_Widths interval

subdivision selection rules in the sense that the sequence of leading intervals

converges only to global maximizer points.

Proof:

Consider first the case when the IIR rule is applied. Assume that there exists such a

subsequence {Xi} of the leading boxes that Xi is a subset of Xi-1, and there exists a

point x’ in the search interval such that f (x’) < f (x*), and x’ is in each Xi. We

demonstrate that it will imply a contradiction.

We prove first that during the subdivision in the subsequence {Xi} every such variable

that appears in the computation tree will be halved. It is so since otherwise when a

variable that is used during computation would keep the original width while the

width of others converges to zero. As a consequence, then {Xi} converges to a point

regarding those variables that appear in the computed expression. This fact provides

the contradiction, since the selection of the subinterval with the largest upper bound

on the objective function cannot converge to a point x’ in the search interval such that

f (x’) < f (x*), due to the assumed α-convergence.

For the case of the IIR_Widths subdivision direction selection rule the proof is similar,

but it is more straightforward that the respective interval subsequence has such

intervals for which the width converges to zero for all variables used within the

computation. ■

It is noted that the leading interval subsequences do not necessarily converge to points

of the search space. It may happen when there is at least a variable that does not

contribute to the objective function, i.e., it is not used in the computation tree. In such

 124

cases there is a continuum of global maximizer points and the resulting intervals will

highlight this phenomenon, since such variables will keep their width in the original

search interval. This is true for both introduced selection rules, and this indicates that

these are as sophisticated as the rules B and C that also have this feature.

 125

Chapter 5

Computational Results

5.1. Bound Constrained Optimization (BCOP)

The numerical experiments are conducted on well-known test problems from the

literature in order to assess the performance of IIR against k-best (for a fair

comparison, 2-best) parallel version of established subdivision direction selection

rules and against the standard 2n multi-section rule.

Testing environment

The runs were executed on a PC with 2 GB RAM, 2.4 GHz Intel Xenon CPU, under

Windows OS system. All codes were developed with Visual C++ 6.0 interfaced with

the PROFIL interval arithmetic library.

5.1.1. Comparison Basis

The performance of IIR is compared with two well established and efficient gradient-

based subdivision direction selection rules (Rules B/C) from the literature (Ratschek

and Rokne 1995, Csendes et al. 2000). These rules have become standard benchmarks

because they have been identified as best performing among others after extensive

testing. For a fair comparison with our multi-section approach, Rules B/C is also

converted into multi-section rules by applying 2-best subdivision strategy (Berner

1996), i.e., the first two variables from the list (sorted according to Rules B/C) are

partitioned. These rules are briefly described below.

 126

Rule B (Hansen 1992):

Rule B chooses variables according to a maximal index consisting of variable interval

width multiplied by the width of its respective first order derivative, w(Fi′(X)), as

defined in equation (5.1):

Select xk: Ck := max
i=1...n

{Ci }, where Ci =w(Xi)w(Fi′(X)).

 (5.1)

Rule C (Ratz 1992):

The first order derivative of each variable is multiplied by the difference between its

interval and its midpoint, Mi. The variable with the maximum index value defined in

equation (5.2) is selected by Rule C.

 Select xk: Ck := max
i=1...n

{ Ci }, where Ci =w(Fi′(X) (Xi - M i)). (5.2)

5.1.2. Test Functions

27 well-known test functions from the literature are selected to compare the

performance of IIR against Rules B/C multi-section approach. The number of test

instances becomes 34 as some functions such as Levy, Griewank and Schwefel are

run with increasing number of dimensions (up to 30). The test functions are provided

with their references and features in Table 5.1. The complexities and features of these

test functions are discussed in detail in previous comparisons (Özdamar and

Demirhan 2000) and they present a balanced portfolio from easy (such as Schwefel

3.1, Box), through moderate (such as Griewank) to difficult (such as Schwefel 3.7)

problems with topological properties discussed in many global optimization

references.

 127

Problem (Dim.) Description Reference

Ackley (4) Multimodal trigonometric function Website MATLAB /
TEST/Lazauskas

Brownal (10) Twice differentiable sum of squares. CUTEr

Box 3D (3) Singular problem with manifold of
solutions Schwefel (1981)

Cos 4 (4) Multimodal trigonometric function Breiman and Cutler (1993)
Dixon3dq (10) Twice differentiable quadratic function CUTEr

Djong’s Function 2
(8)

Global optimum inside a long, narrow,
parabolic shaped flat valley, slow
convergence in the valley

De Jong (1975)

Eg1 (3) Twice differentiable trigonometric
function CUTEr

Exp 6 (6) Exponential function Breiman and Cutler (1993)
Extended Kearfott
(4) Polynomial function Kearfott (1979)

Extrosnb (10) Twice differentiable Sum of Squares. CUTEr
Genhumps (5) Twice differentiable Sum of Squares. CUTEr
Griewank
(5, 10, 20)

Wide spread regularly distributed
maxima, trigonometric

http://iridia.ulb.ac.be/langerm
an/ ICEO.html

Hartman (6) 4 local minima Törn and Zilinskas (1989)
Hs045 (5) Twice differentiable geometric function CUTEr
Levy 14,16,18
(3, 5,7)

2700, 105, 108 local minima,
trigonometric Levy et al. (1981)

Levy 10,11,12
(5, 8, 10) 105 , 108 , 1010 local minima, trigonometric Levy et al. (1981)

Michalewicz (5)
Multimodal trigonometric function,
function values around narrow peaks give
little information

http://iridia.ulb.ac.be/langerm
an/ ICEO.html

Powell (4) Singular, Hessian at origin Moré et al. (1981)

Rastrigin (8) Highly multimodal trigonometric,
regularly distributed local maxima

Website MATLAB /
TEST/Lazauskas

Rosenbrock (10) Long curved only slightly decreasing
valley Rosenbrock (1970)

S271 (6) Twice differentiable quadratic function Schittkowski (1987).
S288 (20) Twice differentiable quadratic function Schittkowski (1987).
Schwefel 1.2 (4) Continuous unimodal function Schwefel (1981)
Schwefel 3.1 (3) Unimodal function Schwefel (1981)
Schwefel 3.7
(15, 30) Singular Hessian at x* = 0 Schwefel (1981)

Shekel (4; m=10) Multimodal test function Törn and Žilinskas (1989)

Sphere (7) Unimodal http://iridia.ulb.ac.be/largerm
an/ ICEO.html

Table 5.1. Description and references of the bound constrained optimization test

functions.

 128

5.1.3. Computational Results

Performance is measured in terms of the number of function and gradient calls (as

indicated by FE and GE, respectively in Table 5.2), the CPU time in seconds, and the

absolute deviation from the global optimum value. Positive absolute deviations occur

in cases where methods fail to converge within 300 CPU seconds. The latter test

instances are indicated at the end of Table 5.2. In IIR, runs FE does not include calls

at subexpression levels because they are partial expression calls, and the latter are

assumed as computational overhead. FE indicated for IIR is equal to the number of

tree traversals. Rules B and C are supported by the monotonicity test since it does not

require additional gradient calls. Finally, all methods use the cut-off test.

A run is completed when for all non-discarded pending boxes the difference of the

function upper bound over the box to the current lower bound is less than 1 x 10-13.

In the last five rows of Table 5.2, we can observe that Rules B and C were not able to

converge on four test functions within the CPU time limit imposed, but they are able

to converge for the 5th one in 0.141 seconds. Similarly, the IIR rule does not converge

for the first three functions, but it was able to converge in the 4th and 5th functions

within 6.153 seconds, and 0.282 seconds respectively. However, IIR_Widths do not

converge for first three test functions and the 5th test function, but it was able to

converge in 4th one within 6.374 seconds. The performance of IIR is notable in the

function S288 where Rules B/C end up very far from the global optimum.

Considering all 34 test functions, the results obtained by Rules B and C are not

significantly different. When the first part of Table 5.2 is analyzed, we observe that

the average number of function calls for IIR is larger than those of Rules B and C

(including their gradient calls). Despite this fact the average CPU time required for

 129

IIR is almost half of those of Rules B and C. That of IIR_Widths is almost one-fourth

of Rules B/C. The tree traversal overhead in IIR that can be compared with the task of

calculating the gradient in the other rules. The number of best solutions obtained by

IIR_Widths compares very well with others. Hence, we can conclude that IIR’s

symbolic methodology of selecting the maximum impact variables is more efficient

than that of the function rate of change based rules.

In Table 5.3, we provide a summary of total CPU times taken by all rules for

functions with less than five dimensions and for those greater than five dimensions. In

the first part of Table 5.3, we observe that IIR’s performance is inferior in test

functions up to five dimensions. In problems with larger dimensions, its performance

is significantly superior as compared to Rules B and C. When the outlier CPU time

(Griewank 20D) was removed from this set, we have found the difference in

performance statistically significant (at a 5% significance level). In Table 5.3, the

total CPU time needed by all three methods is given for the first 29 test problems

(split into less than or greater than five dimensions) where all methods converge. This

outcome is expected because the sequence of variables to be partitioned gains more

importance in larger dimensional problems. Both Rules B and C are affected by the

width of variable domains, and this tends to push the selected variable sequence into a

more balanced manner in terms of box size. However, the size of variable domains

has a more implicit impact on the choice of variables in IIR.

 130

IIR_Bounds IIR_Widths Rule B Rule C Function
(Dimension) FE CPU FE CPU FE GE CPU FE GE CPU

Box 3D(3D) 180 0.407 164 0.296 140 141 0.313 140 141 0.312
Eg1(3D) 414 0.203 292 0.125 12 13 0.016 12 13 0.016
Levy14(3D) 324 0.142 156 0.095 164 165 0.172 164 165 0.188
Powell(4D) 1224 0.875 1224 0.859 1000 1004 1.141 1060 1061 1.297
Ackley(4D)$ 4260 2.950 416 0.312 - - - - - -
Cos4(4D) 5460 6.771 4664 4.263 276 277 0.391 276 277 0.391
Extended
Kearfott(4D) 296 0.125 296 0.156 432 433 0.421 432 433 0.421

Schwefel 1.2 (4D) 1488 5.500 260 0.125 200 201 0.140 200 201 0.140
hs045(5D) 320 0.375 512 0.530 20 21 0.015 20 21 0.047
Griewank(5D) 316 0.359 252 0.234 240 241 0.390 240 241 0.391
Levy10(5D) 316 0.453 304 0.423 236 237 0.719 236 237 0.874
Levy16(5D) 416 0.469 340 0.155 268 269 0.594 268 269 0.594
Genhumps(5D) 10556 11.384 496 0.593 416 417 1.155 416 417 1.155
Exp6(6D) 624 0.671 572 0.514 28 29 0.062 28 29 0.062
S271(6D) 932 0.719 524 0.344 520 521 0.781 520 521 0.781
Sphere(7D) 384 0.281 384 0.281 108 109 0.203 108 109 0.203
Levy18(7D) 416 0.500 532 0.765 364 365 1.624 364 365 1.624
Rastrigin(8D) 538 1.187 492 0.765 488 489 2.140 488 489 2.140
Levy8(8D) 568 1.311 580 1.483 380 381 3.156 380 381 3.156
Djong’s Function
s(8D) 488 0.717 488 0.750 484 485 2.219 488 489 2.220

Rosenbrock(10D) 652 1.410 652 1.389 720 721 6.156 708 709 6.047
Griewank(10D) 640 2.017 572 1.110 488 489 3.578 484 485 3.484
Extrosnb(10D) 572 1.141 572 1.145 552 553 4.437 544 545 4.338
Dixon3dq(10D) 616 1.297 616 1.329 644 655 3.859 588 589 3.687
Levy12(10D) 672 1.915 564 1.529 472 473 6.422 472 473 6.422
Brownal(10D) 648 3.393 608 2.184 484 485 5.422 484 485 5.516
Schwefel3.7(15D) 128 0.172 128 0.203 124 125 1.313 124 125 1.313
Griewank(20D) 1332 13.590 1120 5.891 960 961 39.482 972 973 39.733
Schwefel3.7(30D) 252 0.812 252 0.830 244 245 17.187 244 245 17.124
Average 1208 2.108 622 0.989 374 375 3.697 455 456 3.703
Std. dev. 2141 3.283 815 1.266 255 256 7.832 259 259 7.865
No. of Best Sol. - 8 - 16 - - 6 - - 5
% of Best Sol. 27.5 55.17 20.68 17.24
 Problems not Converged within 300 CPU Seconds

IIR_Bounds IIR_Widths Rule B Rule C Function
(Dimension) FE Abs.

Dev. FE Abs.
Dev. FE GE Abs.

Dev. FE GE Abs.
Dev.

Shekel (4D,
m=10) 10712 0.008 10656 0.000 17182 17183 0.000 17182 17183 0.000

Michalewicz (5D) 10112 2.884 14292 0.000 17506 17507 0.000 17274 17275 0.000
Hartman(6D) 9636 0.163 12144 0.002 9484 9485 0.000 9484 9485 0.000
S288(20D) 1356 0.000 135 0.000 6196 6197 3000 10576 10577 3000
Schwefel 3.1(3D) 308 0.000 21072 0.000 220 221 0.000 220 221 0.000
$: indicates problem in computing Gradient value

Table 5.2. Comparison of numerical results for bound constrained optimization

problems.

 131

Dimension IIR_Bounds IIR_Widths Rule B Rule C

n < 5 16.973 6.231 2.594 2.765
n >= 5 44.173 22.447 100.914 100.911

Table 5.3. Total CPU times in seconds for small and large size BCOP

5.2. Continuous Constraint Satisfaction Problems

The numerical experiments are conducted on well-known test problems from the

literature in order to assess the performance of different tree management of IIR

against established subdivision direction selection rules and some established

software such as ALIAS, QUAD, ICOS, and COCOS.

Testing environment:

All our runs are executed on a PC with 256 MB RAM, 1.7 GHz P4 Intel CPU, on

Windows platform. Our codes are developed with Visual C++ 6.0 interfaced with

PROFIL interval arithmetic library (Knuppel 1994) and CFSQP (Lawrence et al.

1997). CPU times for QUAD are reported on a 1.0 GHz PC Notebook whereas ALIAS

runs are reported for a DELL400 1.7 GHz machine.

5.2.1. Comparison Basis

Comparison between IIR and other subdivision direction selection rules:

We compare the performance of the symbolic subdivision method, IIR, with two

established subdivision direction selection rules: largest width (commonly known as

Rule A), and maximum interval rate of change (Smear), a rule mentioned previously.

All three rules are embedded in the same IP algorithm with adaptive tree

management, restricted parallelism approach and FSQP. In Rule A and Smear, wj are

taken as variable interval width or maximum Jacobian interval bound and they are

divided by the largest width or maximum Jacobian bound. Let us re-emphasize that,

 132

in IIR, only variables that are identified by IIR_Tree are considered and assigned

weights, while in Rule A and Smear, all variables are candidates for partitioning. We

also carried out experiments using the Round Robin variable selection strategy.

However, in most cases it could not converge, and we therefore omit it from the

presentation.

Comparison between adaptive tree management approach and other strategies:

The impact of the adaptive tree management approach is measured by running the

three rules, IIR, Rule A and Smear, with pure depth-first and pure worst-first

branching strategies that are usually utilized in IP.

Comparison basis with other interval methods:

In the presentation of results, we also provide the published results of the following

symbolic-interval methodologies: ALIAS (Merlet 2000, http://www-

sop.inria.fr/coprin/logiciels/ALIAS/Benches/), QUAD (Lebbah et al. 2003), ICOS

(Lebbah 2003), and COCOS wherever results are available (Neumaier et al. 2005). As

mentioned previously, ALIAS is an extensive interval-symbolic software library where

many of the local and global interval and symbolic filtering methods co-exist with

special tools for univariate polynomials. COCOS involves an advanced IP algorithm

with hull consistency and linear programming techniques. QUAD is designed for

filtering quadratic systems, its first stage involves linearization, and the second stage

uses simplex algorithm to narrow down the bounds of variables in the resulting linear

program. The developers show for their two illustrative examples (also included here)

that QUAD is more efficient than 2B and 3B consistency techniques and compare

their method with Numerica (Van-Hentenryck et al. 1997). ICOS is reported to be the

most reliable method for the CCSP among those compared by Neumaier et al. (2005).

 133

5.2.2. Test Functions

The benchmarks:

Most of the benchmarks originate from the European IST project COCONUT

(http://www.mat.univie.ac.at/~neum/glopt/coconut/benchmark.html) and the COPRIN

web page (http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/). Twenty-three

test problems (some quite challenging to solve) are used in the comparison (including

seven problems from kinematics-robotics fields, one from chemistry, a reactor

problem, two economic models and others), three of which are announced as difficult

problems (Direct Kinematics, Countercurrent Reactors 2, Fredtest) by the COPRIN

group. Three other difficult problems, Cyclic5, Heart, Neurophysics, come from the

COCONUT group. ALIAS results are available mostly among the first thirteen

problems (except for Cyclic5, Chemequ, Kin2 and Stewart-Gough) whereas ICOS and

COCOS results are available for most of the total set of 23 problems (in 18 problems).

Two quadratic problems (Kin2 and Stewart-Gough) are solved by QUAD. In Table

5.4, all test problems are listed with their details (number of dimensions, nonlinear

and linear equations, linear inequalities) and the software they have been solved with.

ALIAS usually solves these problems with Gradient_Solve+Hull Consistency+3B or

Hessain_Solve+3B+StrongHullConsistency method combinations. Gradient_Solve

and Hessian_Solve algorithms obtain sharper function and Jacobian bounds,

respectively. We discuss some of the difficult problems below.

Direct Kinematics has two close solutions that are hard to isolate. This problem

determines the pose parameters of a parallel robot platform and involves 8 difficult

highly non-linear and inter-dependent trigonometric equations with 3 independent

 134

Problem D,# NE, #LE,
#LIE Category # of

Sol.
Solved
by

Kin2 8,8,0,0 Quadratic 10 QUAD,
ICOS

Kin1-Modified 6,6,0,0 Trigonom. 16 ALIAS

KinCox 4,4,0,0, Quadratic 2 ALIAS,
ICOS

Direct Kinematics 11,11,0,0 Trigonom. 2 ALIAS
Stewart-Gough 9,9,0,0 Quadratic 2 QUAD

FredTest 6,5,1,2 Polynom. 1 ALIAS,
ICOS

Eco9 8,7,1,0 Quadratic 16 ALIAS,
ICOS

Redeco8 8,6,2,0 Quadratic 8 ALIAS,
ICOS

Puma 8,7,1,0 Quadratic 16 ALIAS,
ICOS

Chemequ 5,5,0,0 Polynom. 4 ICOS
Counter concurrent
reactors 2 6,6,0,0 Polynom. 2 ALIAS

Cyclic5 5,5,0,0 Polynom. 1 ICOS
Dietmaier 12,12,0,0 Quadratic 40 ALIAS
Heart 8, 6,2,0 Polynom. 2 ICOS
Neuro 6, 6,0,0 Polynom. 1 ICOS
Quadfor2 4,3,1,0 Polynom. 1 ICOS
Wright 5,5,0,0 Quadratic 5 ICOS
Solotarev 4,4,0,0 Polynom. 6 ICOS
S9_1 8,4,4,0 Polynom 4 ICOS
Butcher 7,7,0,0 Polynom 7 ICOS
Trinks 6,4,2,0 Polynom 2 ICOS
Lorentz 4,4,0,0 Polynom 3 ICOS
Remier5 6,5,0,0 Polynom 2 ICOS

Table 5.4. List of CCSP benchmarks.

(Note: D: Dimension, NE: Nonlinear Equations, LE: Linear Equations, LIE: Linear
Inequailities)

quadratic equations. Other difficult kinematics problems included here and not

covered by COPRIN group but solved by QUAD are: 6R (Kin2) and Stewart Gough.

Kin2 is a quadratic problem with 10 real solutions solved by QUAD and also tested by

COCONUT group. Kin2 describes the inverse position problem for six-revolute-joint,

and the Stewart Gough involves a manipulator configuration problem. The Stewart

Gough has 3 totally independent constraints that might make constraint propagation

based filtering methods (such as 2B and Box) ineffective (as verified by Lebbah et al.

 135

2003). Numerica (where Box consistency technique is included) makes more than

10,000,000 narrowing iterations to solve this problem. Another benchmark is the

trigonometric Kin1-Modified that describes the inverse kinematics of an elbow

manipulator.

Puma represents the inverse kinematics of a 3R robot whereas the KinCox is the

simple inverse position problem. Kinematics problems specifically require the

identification of all configurations (feasible solutions) because missing some solutions

result in uncovered workspace. The benchmark, Fredtest, also takes place in the

difficult problem category of the COPRIN group. Eco9 and ReDeco8 are quadratic

economic modeling problems.

Chemequ is 3rd degree chemical equilibrium of hydrocarbon combustion with high

constraint dependency. Counterconcurrent Reactors 2 is a 2nd degree sparse and

partially separable polynomial. Cyclic5 involves constraints that have geometric terms

with increasing number of variables. This problem is also ladder type in the sense that

an additional variable is added to the multiplicative terms in each consecutive

constraint. Hence, all constraints have strong inter-relations.

Dietmaier benchmark represents the forward kinematics equations of a parallel robot

and it is quite famous in robotics for its guaranteed 40 real solutions (Dietmaier

1998). Heart and Neurophysics problems involve complex expressions built by

multiplicative terms involving higher order polynomials. The remaining problems

(last eight) have simpler forms.

5.2.3. Computational Results

Test results are given in terms of Standard Time Units, STU (Shcherbina et al. 2002)

taken by each software to identify all solutions (ALIAS/QUAD, IP) or a single solution

 136

(COCOS/ICOS). All CPU times reported for ALIAS, QUAD, ICOS, COCOS, and

proposed IP are converted into STU’s by taking into consideration the processing

speed of machines reported.

Results:

Table 5.5 provides a summary of results obtained by all three subdivision selection

rules and three branching strategies covering all 23 problems as well as ALIAS (9

problems), QUAD (2 problems), ICOS (18 problems) and COCOS (18 problems). The

detailed results for all 23 problems are omitted due to lack of space and difficulty in

following large tables.

Before discussing the results in Table 5.5, we would like to mention that none of the

methods in comparison includes all available symbolic-interval tools. For instance,

COCOS lacks some numerical and consistency techniques that are available in ALIAS,

QUAD is very different from other methods, and the Rules in IP use only interval

evaluation as filtering technique and they do not yet include numerical tools.

Furthermore, the test bed includes interesting and hard benchmarks, but it is not an

exhaustive test bed, and all method’s results are not published in the literature for all

available benchmarks. In order to provide such a full comparison, all codes pertaining

to the methods mentioned here should be made publicly executable with common data

structures. Therefore, our tests and comparisons would only be fair among the three

Rules and IP tree management schemes proposed here. The results of other methods

should be viewed as informative and they are included for providing some insight on

the degrees of difficulty of the benchmarks. More detailed results are given in

Appendix-A.

 137

The following information are provided in Table 5.5: the average STU’s taken (all

methods), the number of tree levels the solutions are found in (only for adaptive

branching strategy); number of FSQP calls (all Rules); average number of variables

partitioned in parallel for IP (all Rules), the number of function calls outside FSQP

(all Rules). We also provide the number of best solutions found (all methods), number

of problems that could not be solved during the given time limit (all methods) and the

number of problems where ICOS, COCOS or ALIAS/QUAD results are not available.

We do not display the number of Jacobian calculations used by Smear rule. We also

summarize the average percentage of solutions found in each tree level of the adaptive

IP. In three of the problems (Fredtest, ECO9 and PUMA) simple consistency check

has been applied to linear constraints. The convergence rate of the rules slows down

significantly when we apply this check in Redeco8, because the linear equality has too

many variables and in this case, the reduction in variable domains is not worth the

consistency check overhead.

Comparison among the Rules and IP tree management approaches:

When IIR, Rule A and Smear are compared under adaptive tree management scheme

IIR is distinctly superior as compared to Rule A and Smear, with respect to average

STU, number of unsolved problems and best solutions found. On the average, it

consumes 46.177% less time than Rule A in solving CCSP’s. IIR reduces both the

number of function calls outside FSQP and the number of FSQP calls significantly.

Sometimes, despite the fact that the number of FSQP calls or function evaluations is

higher in IIR, it tends to need lesser or similar STU’s to converge as compared to Rule

A. The reason is that due to different partitioning sequences, in such problems, FSQP

takes much longer time in Rule A in its search of feasible solutions in a given box. For

instance, in Redeco8, the total number of function calls within FSQP is 2,501,033

 138

under IIR whereas it is 4,849,203 under Rule A, but IIR takes 0.411 STU’s to

converge while Rule A takes more than 0.771 STU’s. In general, the difficult

problems for all rules under adaptive tree management scheme are Redeco8 (except

for IIR), Chemeq, Cyclic5 (except for IIR), Dietmaier, and Heart. It is interesting to

note that the Smear rule works well in Dietmaier as compared to other rules, however,

in this problem, ALIAS produces the best overall result. Similarly, Smear rule under

depth-first approach is the only method that converges in the Heart within the given

STU limit.

In the worst-first branching scheme, Rule A and IIR have similar performance, and

Smear is still the worst performing rule. In addition to the previously mentioned

complex problems, in this branching scheme, Kine2, ECO9 and Reimer5 cannot be

solved within the given time limit. In the depth-first approach, the two rules are still

similar but Smear becomes the best performing one. In this tree management

approach, the number of unsolved problems becomes quite large for IIR and Rule A as

compared with the adaptive and worst-first approaches. When the three branching

strategies are compared, the adaptive approach is observed to produce the best overall

results with IIR and Rule A.

Many of the complex benchmarks have constraints that are formed of long

expressions involving multiplicative terms. The latter property leads to slower

convergence and higher tree levels in the adaptive approach. In the adaptive tree

management scheme, for Direct, Redeco8, Cyclic5, Reactor 2, Reimer5 and

Solotarev, IIR finds all solutions in lesser number of tree levels whereas in Dietmaier

and Kin1_modified, it requires more levels. The average percentage of solutions

found (indicated in Table 5.5) in each level illustrates the differences in the

performance of the Rules. From this information, we can gather that Rule A and

 139

Smear have difficulty in identifying solutions after the second level whereas IIR

identifies more solutions in Level 1 on the average and it is able to converge in every

problem except Dietmaier and Heart.

Although the average scale of variable partitioning parallelism seems to be similar

among the Rules, we observe that all Rules use different scales when this information

is viewed on individual problem basis. A larger scale does not imply better

performance or vice versa, e.g., in S9_1, IIR converges in 0.045 STU’s with average

parallelism scale of 7.8 whereas Rule A converges in 0.052 STU’s with a parallelism

scale of 4.28, and Smear cannot converge within 0.771 STU limit with a scale of 5.0.

Every rule adjusts its own scale of adaptive parallelism that may change from two

(minimum number of variables to be partitioned in all Rules) to eight. A good

example of such self-sustained parallelism is Direct Kinematics where both IIR and

Rule A prefer to maintain a lower parallel profile whereas in Fredtest a high profile

results in good performance. However, we can generally say that the scale of

parallelism is higher in more difficult problems.

Other methods:

In the comparison between ALIAS/QUAD and ICOS/ COCOS, one should remember

that in the 9 problems of the first 13 benchmarks that include quite difficult ones,

ALIAS results are available. For the last 10 problems, the first two of which are

complex, ALIAS/QUAD results are not available. On the other hand, results for

ICOS/COCOS do not include STU’s for three difficult kinematics problems, Direct,

Stewart-Gough, Dietmaier, and also for Reactor 2. We observe that ICOS is quite

slow in converging and out of 18 problems that it attempts, it is able to converge only

 140

in 3 problems before the STU limit is reached whereas COCOS can converge in 10

problems.

IP - Adaptive Tree management IP - Worst-First Tree
management

IIR Rule Rule A Smear IIR Rule Rule A Smear
Avg. CPU (STU) 0.122 0.226 0.395 0.308 0.308 0.490
Avg. no. of stages 1.739 2.174 2.217 - - -
Avg. no. of SQP calls 858.217 3093.09 3772.17 356.913 369.522 595.739
Avg. no. of function calls 16356.09 34020.48 52959.26 4535.22 4417.13 6662.04
No. of unsolved problems 2 5 11 8 8 13
% of unsolved problems 8.69 21.7 47.83 34.78 34.78 56.52
No. of best solutions found 9 4 2 1 4 2
% of best solutions found 39.13 17.39 8.69 4.34 17.39 8.69
Data not available 0 0 0 0 0 0

Avg. percentage of Solutions found
Stage 1 72.50 64.55 56.81 - - -
Stage 2 17.39 10.27 11.49 - - -
Stage 3 5.07 1.63 0.50 - - -
Stage 4 1.63 0.00 0.50 - - -
Stage 5 - 0.00 - - - -
Total 96.59 76.45 69.3 84.40 80.65 72.77

IP - Depth-First Tree
management ALIAS

IIR Rule Rule A Smear QUAD
ICOS COCOS

Avg. CPU (STU) 0.506 0.509 0.345 0.234 0.667 0.448
Avg. no.of stages
Avg. no. of SQP calls 7412.17 9254.43 2538.35 - - -
Avg. no. of function calls 603921.3 755506.3 30379.74 - - -
No. of unsolved problems 12 15 8 2 7 -
% of unsolved problems 52.17 65.21 34.72 18.18* 36.84*
No. of best solutions found 2 1 3 4 0
% of best solutions found 8.69 4.34 13.04 36.36* 0*
Data not available 0 0 0 12 14 -

Avg. percentage of Solutions found
Stage 1 - - - - - -
Stage 2 - - - - - -
Stage 3 - - - - - -
Stage 4 - - - - - -
Stage 5 - - - - - -
Total 63.78 56.87 83.88

Table 5.5. Summary of results for CCSP benchmarks

* Percentage is calculated using the actual number of problems (Actual number of problems =
total no. of problems – no. of problems for which data is not available)

 141

 ICOS converges in Wright, Kincox and PUMA that are relatively simple as compared

to others. Meanwhile, ALIAS is able to converge fastest among all methods in Kincox,

ECO9, Redeco8, PUMA and Dietmaier, some of which are hard benchmarks. This is

quite an achievement because ALIAS results are for finding all solutions rather than

one. Yet, when we look at the average STU’s, we should remember that ALIAS results

are not available for three time consuming problems, Cyclic5, Chemeq, and Heart

whereas COCOS and ICOS results are available for these problems.

Some detailed observations.

It is interesting to see that problems that are difficult for filtering oriented ALIAS-

QUAD methods (Fredtest, Direct, Kin1-Modified) are easier to solve for IIR and Rule

A whereas Redeco8 and Dietmaier are serious obstacles for the Rules. Redeco8 is also

a problem for ICOS/COCOS. In Redeco8, only IIR is able to identify all solutions

among the Rules, but it takes longer time than ALIAS. In Kin2 that has appropriate

constraint structure for filtering methods, IIR and Smear results are compatible with

that of QUAD. ICOS does not converge and COCOS produces the best overall result,

which is remarkably superior to others. In trigonometric CCSP’s, Kin1-Modified and

Direct Kinematics, filtering techniques in ALIAS seem to be much less effective as

compared to the Rules. In the Stewart Gough, the linear filtering technique in QUAD

performs worse than the Rules, possibly due to the overhead of Simplex method. In

Fredtest, ALIAS and ICOS cannot converge whereas the Rules have STU’s at 1/1000

level in almost all branching schemes. COCOS converges in this problem but it is

somewhat slower than the Rules. Cyclic5 can be solved by IIR under adaptive

branching scheme but not by other Rules or tree management approaches. It can

however be solved by COCOS though nearly using total allowed time. ECO9 and

Redeco8 are problems where filtering techniques are very successful. They both have

 142

ladder type of nonlinear equation structures where constraint propagation is expected

to be effective. Chemeq is successfully solved by Smear (under all branching

schemes) and IIR (under adaptive branching approach), though the latter is much

slower. In Reactor 2, Rule A and IIR are compatible with and better than (in worst-

first and depth-first approaches) ALIAS in terms of STU’s.

In the last ten problems where all method results are available except for

ALIAS/QUAD, it is observed that except for the Heart, in most problems (Butcher,

Lorentz, Quadfor2, Trinks and Wright) all Rules under adaptive and worst-first tree

management strategies perform better than ICOS/COCOS. In the more difficult

benchmarks such as reimer5 and S9_1, IIR and Rule A outperform COCOS only with

the adaptive tree management approach but not with the other two. More detailed

results are illustrated in Appendix A.

Final comments:

As final comments on these numerical results, we would like to add that these tests

are only preliminary and the target is to show that basic IP that is enhanced by IIR and

adaptive tree management that invokes FSQP is a viable and superior approach that

can be adopted in CCSP’s. Without FSQP (or any other local solver), IP would have

no chance to converge. Testing performance of IP- IIR with other local solvers or

interval Newton constitutes another line of investigation. Integrating advanced

consistency techniques within the latter method combination is also a topic of future

research.

The novel subdivision direction selection rule, IIR, outperforms Rule A and Smear in

the adaptive tree management approach that produces the best overall results when

compared with worst-first and depth-first strategies. COPRIN group explains that the

 143

tree management system in ALIAS swaps adaptively from worst-first/best-first to

depth first according to memory usage of the program. In other methods, such as

interval Newton, basic best-first strategy is used for tree management.

Finally, we know from the manual of ALIAS, that parallel variable bisection can be

carried out, though the user has to fix the number of variables to a priori number.

Similar parallel bisection methods are also available in bound constrained

optimization literature. It would be interesting to run such codes with our simple

parallelization scheme. In preliminary experimentation that is not displayed here for

lack of space, we found that convergence is slow when the degree of parallelism is

fixed to a certain a priori number.

5.3. Constrained Optimization

The numerical experiments are conducted on well-known test problems from the

literature in order to assess the performance of different tree management of IIR

against established subdivision direction selection rules and some established

commercial software such as FSQP, Baron, Minos, Conopt, LGO and Snopt.

Testing environment:

All runs are executed on a PC with 256 MB RAM, 1.7 GHz P4 Intel CPU, on

Windows platform. The IP code is developed with Visual C++ 6.0 interfaced with

PROFIL interval arithmetic library (Knuppel 1994) and FSQP.

5.3.1. Comparison Basis

The IP results are compared with five different solvers that are linked to the

commercial software GAMS (www.gams.com) and with FSQP (Zhou and Tits 1996,

Lawrence et al. 1997) whose code has been provided by AEM

 144

(www.aemdesign.com/FSQPmany obj.htm). The solvers used in this comparison are

Baron 7.0 (Sahinidis 2003), Conopt 3.0 (Drud 1996), LGO 1.0 (Pinter 1997), Minos

5.5 (Murtagh and Saunders 1987), Snopt 5.3.4 (Gill et al. 1997) and FSQP. Every

solver is allowed to complete its run without imposing additional stopping criteria

except the maximum CPU time.

In order to illustrate the individual impacts of IP’s features (the box selection

criterion, the adaptive tree search scheme and the branching rule IIR), we include the

following IP variants in the comparison.

i) IP with Widest Variable Rule (Rule A, Csendes and Ratz 1996, 1997); IP with

Smear Rule (variable with the largest rate of change*w(xi) by Kearfott and

Manuel 1990); and IP with IIR;

ii) IP with depth-first tree search approach; IP with best-first tree search approach

where box ranking is the same as that of adaptive tree approach; and IP with

adaptive tree management approach;

iii) IP with box ranking according to maximum objective bound augmented with

penalty, ()F Y -INFY
2 (Yenjay 2005);

iv) IP with max INFY /max ()F Y swapping box ranking approach (as described

earlier).

The first set of IP variants listed above enable us to measure the impact of the

branching rule, IIR against rules established in the interval literature. The second set

of variants enable the comparison of the proposed adaptive tree search management

approach against classical tree management approaches. The third and fourth variants

enable the comparison of the max INFY /max ()F Y swapping box ranking criterion

 145

against the static penalty approach. All three branching rules are run both with

augmented ()F Y box selection approach and the proposed swapping criterion

approach as well as all three tree search management schemes. Since the depth-first

tree management approach does not need a box ranking criterion, we have a total

number of 15 IP runs for each test problem.

The performance of each IP variant is measured on all benchmarks with the following

performance criteria: the average absolute deviation from the global optimum over all

55 and 5 benchmarks, the average CPU time in STU’s, the average number of tree

stages where IP stops, the average number of times FSQP is invoked, the average

number of function calls invoked outside FSQP, the number of optimal solutions

obtained and the number of problems where a feasible solution could not be obtained.

We provide two summaries of results: one for 55 problems and one for 5

trigonometric problems, the reason being that Baron is not enabled to solve

trigonometric models (http://www.gams.com/dd/docs/solvers/baron.pdf).

5.3.2. Test Functions

Numerical experiments have been conducted on a set of 60 COP benchmarks, five of

them involving trigonometric functions. Most of these test problems are extracted

from the COCONUT benchmark library (http://www.mat.univie.ac.at/~neum/glopt/

coconut/benchmark.html) and Princetonlib (http://www.gamsworld.org/performance/

princetonlib/princetonlib.htm). These problems are listed in Table 5.6 with the

number of dimensions, number of linear and nonlinear inequalities and equalities.

While executing IP, we allow at most 2000*(number of variables + number of

constraints) function calls carried out outside FSQP calls. The maximum iteration

number allowed for FSQP is limited to 100. We also restrict IP’s run time by 2.827

 146

(i.e., 900 seconds) Standard Time Units (STU defined by Scherbina et al. 2002). One

STU is equivalent to 318.369 seconds on our machine.

Problem
D, # NE, #
LE, # NIE,

#LIE
Reference Problem

D, # NE, #
LE, # NIE,

#LIE
Reference

Aircraftb 18, 5, 5, 0, 0 Coconut Hs053 5, 0, 3, 0, 0 Coconut
Avgasb 8, 0, 0, 10, 0 Princetonlib Hs056 7, 4, 0, 0, 0 Coconut
Alkyl 14, 6, 1, 0, 0 Coconut Hs407 5, 3, 0, 0, 0 Coconut
Bt4 3, 1, 1, 0, 0 Coconut Hs108 9, 0, 0, 12, 0 Coconut
Bt8 5, 2, 0, 0, 0 Coconut Hs080 5, 3, 0, 0, 0 Coconut
Bt12 5, 3, 0, 0, 0 Coconut Hs043 4, 0, 0, 3, 0 Coconut
Bt11 5, 2, 1, 0, 0 Coconut Hs116 13, 0, 0, 10, 5 Coconut
Bt7 5, 3, 0, 0, 0 Coconut Himmel11 9, 3, 0, 0, 1 Coconut
Dispatch 4, 1, 0, 0, 1 Coconut Immum 21, 0, 7, 0, 0 Coconut
Dipigri 7, 0, 0, 4, 0 Coconut Lootsma 3, 0, 0, 2, 0 Coconut
Degenlpa 20, 0, 14, 0, 0 Coconut Lewispol 6, 6, 3, 0, 0 Coconut
Degenlpb 20, 0, 15, 0, 0 Coconut Mwright 5, 3, 0, 0, 0 Coconut
Eigminc 22, 22, 0, 0, 0 Coconut Mhw4d 5, 3, 0, 0, 0 Coconut
Ex5_2_4 7, 0, 1, 3, 2 Coconut Madsen 3, 0, 0, 6, 0 Coconut
Ex9_1_4 10, 4, 5, 0, 0 Coconut Minmaxrb 3, 0, 0, 2, 2 Coconut

Ex8_4_2 24, 10, 0, 0, 0 Coconut Median_sc
op_vareps 5, 0, 0, 3, 0 Coconut

Ex9_2_5 7, 3, 4, 0, 0, 0 Coconut Matrix2 6, 0, 0, 2, 0 Coconut
Ex14_1_5 6, 0, 4, 2, 0 Coconut Mistake 9, 0, 0, 12, 0 Coconut
Ex9_2_6 16, 6, 6, 0, 0 Coconut O32 5, 0, 0, 6, 0 Coconut
Ex9_2_7 10, 4, 5, 0, 0 Coconut Pgon 12, 0, 0, 15, 5 Coconut
Ex9_1_2 10, 4, 5, 0, 0 Coconut Robot 14, 2, 0, 0, 0 Coconut
Ex2_1_9 10, 0, 1, 0, 0 Coconut Rk23 17, 7, 4, 0, 0 Coconut
Ex2_1_3 13, 0, 0, 0, 9 Coconut S381 13, 0, 1, 0, 3 Princetonlib
Ex8_4_1 22, 10, 0, 0, 0 Coconut S355 8, 5, 0, 0, 0 Princetonlib
Ex8_4_5 15, 11, 0, 0, 0 Coconut S336 3, 1, 1, 0, 0 Princetonlib

F_e 7, 0, 0, 3, 4 Epperly
(1995) S262 4, 0, 1, 0, 3 Princetonlib

Fermat_s
cop_vare
ps

5, 0, 0, 3, 0 Princetonlib S203 5, 3, 0, 0, 0 Princetonlib

Fp_2_1 6, 0, 0, 1, 1 Epperly
(1995)

Springs_no
nconvex 32, 0, 0, 10, 0 Princetonlib

Genhs28 10, 0, 8, 0, 0 Coconut Steifold 4, 3, 0, 0, 0 Balogh and
Toth (2005)

Hs087 11, 4, 2, 0, 0 Coconut Sample 4, 0, 0, 2, 0 Princetonlib
Hs108 9, 0, 0, 12, 0 Coconut
Hs080 5, 3, 0, 0, 0 Coconut

Table 5.6. List of COP benchmarks used in experiments

 (Note: D: Dimension, NE: Nonlinear Equations, LE: Linear Equations, NIE: Nonlinear
Inequality Equations, LIE: Linear Inequalities)

 147

5.3.3. Computational Results

The numerical results are provided in Tables 5.7 and 5.8 for non-trigonometric and

trigonometric problems, respectively. When we compare the three tree management

schemes for IP in Table 5.7, we observe that the overall best deviations from the

optimum are obtained by IIR_adaptive tree management scheme under the box

ranking rule that does not involve augmented objective function bounds (non-

penalty). This observation is confirmed by the fact that all three rules under this

configuration have the lowest number of problems where IP does not converge to a

feasible solution. The performance of widest variable rule (Rule A) is close to that of

IIR under both adaptive and best-first tree management schemes. Rule A performs

best only under best-first/non-penalty box ranking configuration. In other

configurations Rule A is inferior to IIR. Smear is usually the worst performing rule

under all configurations except for the depth-first approach where it is close to IIR.

IIR is the best performing rule in all configurations except for best-first/non-penalty

box ranking configuration.

An advantage of the adaptive tree management scheme is that it minimizes CPU times

due to relieved memory requirements and reduced computation times due to less box

sorting operations. Further, it is effective in sending the correct boxes (boxes that

contain feasible solutions) to FSQP that converges to feasible solutions in a lesser

number or iterations as compared to other tree management schemes. As expected, the

best-first approach is the slowest one among all three tree management schemes (due

to maintaining lengthy sorted box lists) and the fastest one is the depth-first. However,

the fastest approach is significantly inferior in solution quality when using Rule A and

IIR. In this approach, the performance of Smear and IIR are not significantly different

and that of Rule A is quite inferior.

 148

A final observation is that the non-penalty box ranking method is generally better than

the penalty one in both best-first and adaptive tree management approaches with

respect to the sum of all three partitioning rules’ average deviation from the global

optimum.

When we compare solvers other than the IP, we observe that the two complete solvers

Baron and LGO are best performing. The performance of Baron is better than the best

IP configuration (IIR_adaptive_non-penalty) both in terms of average deviation from

the optimum and CPU time. However, this difference is not statistically significant.

LGO’s performance is quite inferior to Baron’s and the third best non-IP solver,

stand-alone FSQP, is much worse than LGO. The difference in performance between

FSQP and best IP configuration that uses FSQP as a local solver illustrates the

strength of IP as a complete solver.

In Table 5.8, for trigonometric problems, we observe that the relative performance of

different IP configurations is quite similar to our findings in Table 5.7. It is noted that

the zero deviation of Smear is due to its incapability of solving one problem whereas

the other two rules converge in this problem. Solvers other than IP are significantly

inferior as compared to all IP configurations.

 149

Table 5.7. Summary of results for non-trigonometric COP.

 150

Table 5.8. Summary of results for trigonometric COP.

5.4. Summary of results

Table 5.9 illustrates the performance of the best strategies recommended for solving

BCOP, CCSP and COP problems. It also illustrates the maximum size of the

problems tested here.

In the case of BCOP, we observe that IIR_Widths method is the best IIR configuration

and its performance is superior when compared to the best of other rules i.e., Rule B.

Moreover, the average CPU time required for IIR_Widths is almost of one-fourth of

 151

Rule B’s. Similarly, in the CCSP, we observe that IIR_adaptive tree management.

method is the best IIR configuration versus ALIAS/QUAD. The average CPU time

required for IIR_adaptive tree management is almost half of ALIAS / QUAD.

Problem
Class Recommended

Strategy
Performance

measure
Performance

value

Maximum
problem

dimension
Best of IIR
configuration IIR_Widths CPU time 0.989 30

BCOP Best of other
rules Rule B CPU time 3.697 30

Best of IIR
configuration

IIR_adaptive tree
management CPU time 0.122 11

CCSP Best of other
methods
/solvers

ALIAS / QUAD CPU time 0.234 12

Best of IIR
configuration

IIR_adaptive_non-
penalty

Avg. dev.
from

optimality
0.55 32 COP

(Non-
Trig.
Func.)

Best of other
methods /
solvers

Baron
Avg. dev.

from
optimality

0.434 32

Best of IIR
configuration

IIR_adaptive_non-
penalty

Avg. dev.
from

optimality
0.015 14 COP

(Trig.
Func.) Best of other

methods /
solvers

Snopt
Avg. dev.

from
optimality

38.082 14

Table 5.9 Summary of computational results

For the COP (non-trigonometric functions), we observe that IIR_adaptive_non-

penalty is the best IIR configuration but this time its performance is inferior when

compared to the best performer of other solvers i.e., Baron. The average deviation

from the optimal solution for Baron is close to that of IIR_adaptive tree management

with non-penalty box ranking. However, the difference in performance is not

statistically significant at a 5% significance level. For trigonometric COP problems,

we observe that IIR_adaptive_non-penalty method is significantly superior over the

best of other solvers i.e., Snopt. These results show that the overall performance of IIR

 152

in global optimization problems satisfactory in terms of the performance criteria

stated here.

 153

Chapter 6

Applications

6.1. Applications − Continuous Constraint Satisfaction Problem

The Continuous Constraint Satisfaction Problem (CCSP) is a core topic in many real-

world engineering applications including kinematic analysis. Kinematics is

fundamental in the design and control of robot manipulators (used in contact analysis,

assembly planning, position analysis, path planning) since performance is achieved

through the movement of links/legs whose geometry is crucial. Geometric kinematics

calculates the state of a robot from measurements (direct kinematics) or poses (inverse

kinematics), and answers associated questions of accuracy and singularities. These

problems require the identification of all object positions and orientations that satisfy

a coupled nonlinear system of equations (Tsai and Morgan 1985, Dietmaier 1998).

Testing environment

All the IPA runs are executed on a PC with 256 MB RAM, 1.7 GHz P4 Intel CPU, on

Windows platform. All codes are developed with Visual C++ 6.0 interfaced with

PROFIL interval arithmetic library (Knuppel 1994) and CFSQP (Lawrence et al.

1997).

6.1.1. Description of the Problem

A brief introduction of the inverse position problem is provided for a 6-Revolute-joint

problem in mechanics. It is also referred to as test problem Kin2 and is illustrated in

Figure 6.1.

 154

A 6R manipulator has six moving links, numbered sequentially from 2, 3, 4, 5 and 6,

as shown in Figure 6.1. Link 1 is designated as the base (fixed to ground) and link 6

as the hand or the manipulator. Every two neighboring links are connected by a joint

that is associated with a joint axis Zi, i = 1 to 6. Let Zi, and Zi+1 be two adjacent joint

axes and HiOi+1 be the directed common normal between Zi, and Zi+1. Hi is the

intersection of HiOi+1 and Zi, and Oi+1 is the intersection of HiOi+1 and Zi+1. Then one

can define the following link parameters shown in Figure 6.2.

Figure 6.1. A general 6-R Manipulator

ai = the offset distance from the common normal HiOi+1.

αi = the angle to rotate the axis Zi about the common normal HiOi+1 so that Zi is

parallel to Zi+1. The sign of rotation is given by the right hand screw rule with the

screw taken along the normal HiOi+1.

di = the distance between the two normals Hi-1Oi and HiOi+1 measured from Zi. The

sign of di is positive if OiHi points to the positive Zi direction. Otherwise, di is

negative.

Source: Tsai and Morgan (1985)

 155

θi = the angle to rotate extended line of Hi-1Oi about Zi so that the extended line Hi-1Oi

is parallel to HiOi+1. The sign of rotation is given by the right hand screw with the

screw pointing along the positive Zi –axis.

If the ith joint is revolute, then ai, di, and αi are constant while θi is variable. If the ith

joint is prismatic, then ai, αi, and θi are constant while di is a variable.

A coordinate system (Xi, Yi, Zi) is attached to each link of the manipulator as shown in

Figure 6.2. In each coordinate system, the Zi – axis is defined to align with the ith joint

axis, the Xi-axis is the one along the extended line of Hi-1Oi; and the Yi- axis is defined

according to the right-hand screw rule. The first coordinate system is fixed to ground.

Since the common normal H0O1 does not exist, the X1-axis is chosen perpendicular to

Z1, in an arbitrary manner. Also, a seventh coordinate system is attached to the free-

end to specify the position of the hand. Z7-axis lies in the direction from which the

hand would approach an object as shown in Figure 6.1. X7-axis is defined by the

common normal between Z6 and Z7 axes, and Y7-axis is defined according to the

right-hand screw rule.

Figure 6.2. The basic notation of 6-R Manipulator

The equations representing the 6R problem are derived by first defining the

coordinates of a point P in the ith and (i+1)st coordinate systems as (pxi, pyi, pzi) and

Source: Tsai and Morgan (1985)

 156

(pxi+1, pyi+1, pzi+1), respectively. These two vectors are related to the hand position and

orientation vectors by equations of the form: pi = Ai pi+1,where Ai is a matrix whose

elements are ci=cosθi, si=sinθi, λI= cosαi, and µi = sinαi. The inverse transformation is

written as: 1
1 i ii

−=+p A p . By applying matrix transformation to each pair of coordinate

systems between two successive links and proceeding from link 7 to link 1, the

following equation is obtained: p1 = A1 A2 A3 A4 A5 A6 p7. Since an equivalent

transformation matrix defines the relationship between the coordinates of any point in

the seventh system p7, and that of the same point expressed in the first system, p1, the

matrix Aeq = A1 A2 A3 A4 A5 A6 is known when the position and orientation of the hand

is specified. Let ρ (ρx, ρy, ρz) be the position vector from the origin of the first system

to the origin of the seventh system as shown in Figure 6.1; and l (lx, ly, lz), m (mx, my,

mz) and n (nx, ny, nz) be three mutually perpendicular unit vectors aligned with X7, Y7,

and Z7 axes, respectively. Further, when ρ, l, m and n are given in the first system, the

equivalent A matrix consists of elements ρ, l, m and n.

By applying coordinate transformation and variable elimination, one can arrive at a

system of eight nonlinear equations with eight unknowns expressed in the system of

equations given below (Tsai and Morgan 1985) where 1≤ i ≤ 4.

x2
i+ x2

i+1 – 1= 0

a1i x1 x3 + a2i x1 x4+ a3i x2 x3 + a4i x2 x4 + a5i x5 x7

+ a6i x5 x8+ a7i x6 x7 + a8i x6 x8 + a9i x1 + a10i x2

+ a11i x3 + a12i x4 + a13i x5 + a14i x6+ a15i x7

+ a16i x8 + a17i x8 = 0

-1 ≤ xi ≤ 1

(6.1)

 157

The variables xi and xi+1 represent the cosine (c) and sine (s) of the angle of the ith

revolute joint to rotate (extended line of Hi-1Oi about Zi so that the extended line Hi-

1Oi is parallel to HiOi+1) as illustrated in Figure 6.2. The variables x1, x2, x3, x4, x5, x6,,

x7 and x8 actually represent the c1, s1, c2, s2, c4, s4, c5 and, s5 respectively. In equation

(6.1), the coefficients aki are defined as the manipulator parameters. The details are

available in Morgan (1987).

6.1.2. Overview of Solution Methods for Kinematics Problems

Three major categories of solution methods have been proposed in kinematics

applications (Nielsen and Roth 1997). These are symbolic methods (Elimination,

Gröbner basis), approximate numerical methods (continuation method for

polynomials) and interval-based techniques. Elimination methods use variable

elimination in order to reduce the initial system to a univariate polynomial. The roots

of this polynomial are substituted into other equations yielding all solutions of the

original system. Elimination method was applied in the 6R inverse kinematics

problem (Manocha and Canny 1994) and direct kinematics of Stewart Gough

platform (Husty 1996, Innocenti 2001, Lee and Shim 2001). The elimination method

requires taking the inverse of a large size coefficient matrix that may lead to

numerical instability. The second symbolic method utilized in parallel manipulators

(Faugere and Lazard 1995) is the use of the Grobner basis where solutions are

searched in another triangular system of equations. A general risk of using symbolic

methods is that there might be an explosion in complexity and extraneous roots may

be introduced.

Continuation methods (Allgower and Georg 1980) begin with an initial system whose

solutions are known, and then transform it gradually to the original system whose

solutions are sought, while tracking all solution paths along the way. Researchers

 158

have worked on the improvement of continuation methods and dealt with parametric

difficulties related to the adjustment of continuation weights (Wampler et al. 1990,

Wampler and Morgan 1991, Recio and Gonzalex-Lopez 1994). An interval approach

for achieving reliability in continuation is given by Kearfott and Xing (1994). Some

applications of the continuation method are related to inverse 6R manipulator

kinematics, direct kinematics of the Stewart-Gough platform and nine-point path

synthesis problems for four-bar linkages (Tsai and Morgan 1985, Wampler and

Morgan 1991, Nielsen and Roth 1997). A discussion on the progress of continuation

methods is given by Sommese et al. (2002).

Interval-based methods (Neumaier 1990, Hansen 1992) are complete and numerically

stable algorithms where equations can be entered in their original form without the

need of intuition-guided symbolic reductions. Two main classes of interval-based

methods have been applied in the robotics field: Interval Newton (Rao et al. 1998,

Didrit et al. 1998, Merlet 2001) and Box Consistency techniques (Van-Hentenryck et

al. 1997a, Van-Hentenryck et al. 1997b, Merlet 2004). Both methods are used within

the basic Interval Partitioning Algorithm (IP).

Interval methods can verify reliably that there is no solution in a given sub-set either

by interval evaluation of the search space, by an interval Newton method (Hansen

1992) or by local consistency methods (Benhamou et al. 1994). Interval evaluation is

the simplest way to declare that a box does not have feasible roots, since it calculates

a constraint interval in a given box. Otherwise, if the interval does not contain a

function root (the zero), it discards the box. Convergence of this method can be slow

due to the overestimation of inclusion function ranges that lead to repetitive bisection

of boxes until it is reduced significantly such that the box is discarded. On the other

hand, the Interval Newton method has quadratic convergence in finding a single root,

 159

and it is based on narrowing variable intervals in a box using the iterative Newton

step that stems from an equation derived from the mean value theorem. If the box has

a unique root, Interval Newton method converges to enclose it in a sufficiently small

box. This method also detects that the box is infeasible by observing that the resultant

variable domain does not intersect with that of the box. The computational burden of

this step involves the calculation of the Jacobian and the Gauss-Seidel implementation

that is used to solve the resulting set of linear equations. Researchers have applied

Interval Newton method to solve problems such as 6R inverse kinematics, direct

kinematics of Stewart Gough platform, general single-loop inverse kinematics and

singularity analysis and mechanism design of parallel manipulators (Castellet 1998,

Didrit et al. 1998, Merlet 2001).

The second interval approach used in kinematics is the local consistency method that

is based on narrowing down variable domains by constraint propagation. There are

two types of consistency methods: hull and box consistencies. Hull consistency

(Benhamou et al. 1994) is basically constraint inversion that uses relational interval

arithmetic. It is applicable to more simple constraints due to the dependency problem

that takes place in the case of multiple occurrences of the same variable in a constraint

expression. The dependency problem is partially eliminated by the box consistency

technique (Benhamou et al. 1994, Van-Hentenryck et al. 1997a) that checks the

consistency of gradually expanding sub-domains near box boundaries using interval

evaluation. In both consistency techniques, reduced variable domains are fed into

each constraint and the procedure is repeated resulting in cyclic constraint

propagation. If a variable domain is not reduced substantially, it is bisected to result in

two new sibling boxes that are inserted into the list of pending boxes waiting to be

assessed. Hull and box consistency methods may work in conjunction with each other

 160

and with interval Newton method to gain efficiency. Box consistency

implementations in kinematics are found in 6R inverse kinematics (Van-Hentenryck

et al. 1997a, Van-Hentenryck et al. 1997b), and Gough type parallel manipulator

problem (Merlet 2004), where a comprehensive algorithm that includes 2B and 3B

box consistency, linearization, interval Newton, and unicity operators are used. This

algorithm uses an available ALIAS library which is an advanced tool containing

symbolic, interval, and numerical techniques that deal with root finding in nonlinear

systems of equations and inequalities (Merlet 2000).

6.1.3. Numerical Results

Seven challenging kinematics-robotics problems are used in the comparison, one of

which is considered as difficult problem (Direct Kinematics) by the COPRIN group

(COPRIN). Here, some of their features are discussed. Direct Kinematics has two

close solutions that are hard to isolate. This problem determines the pose parameters

of a parallel robot platform and involves eight difficult highly non-linear and inter-

dependent trigonometric equations with three independent quadratic equations. Other

difficult kinematics problems included here and not covered by COPRIN group but

solved by QUAD are 6R (Kin2) and Stewart Gough. Kin2 is a quadratic problem with

10 real solutions and it describes the inverse position problem for six-revolute-joint.

The Stewart Gough involves a manipulator configuration problem that has three

totally independent constraints that might make constraint propagation based filtering

methods such as 2B ineffective (as verified by Lebbah et al. (2003)). Numerica

(where Box consistency technique is included) makes more than 10,000,000

narrowing iterations to solve this problem. Another benchmark is the trigonometric

Kin1-Modified that describes the inverse kinematics of an elbow manipulator. Puma

represents the inverse kinematics of a 3R robot whereas the KinCox is the simple

 161

inverse position problem. Finally, Dietmaier (Dietmaier 1998) is direct kinematics of

a general Gough platform with 40 real solutions. In Table 6.1, all test problems are

listed with their details (number of dimensions, nonlinear and linear equations) and

their source references.

Tables 6.2 and 6.3 illustrate the detailed comparison of results and summary of results

obtained with IIR, Rule A, Smear under three tree management approaches and CPU

times reported for ALIAS/QUAD respectively.

CPU times are indicated in terms of STU’s (Scherbina et al. 2002). One STU is

equivalent to 388.438 seconds on our machine. All Rules are limited to run for at most

0.771 STU’s. When a method cannot find all real solutions within this limit, then it is

simply indicated as 0.771 in the corresponding CPU time row. The original STU

reported by ALIAS, QUAD and ICOS is overwritten.

Table 6.3 provides the average STU’s taken (all methods), the number of tree stages

the solutions are found in (only for adaptive branching strategy); number of FSQP

calls; average number of variables partitioned in parallel for IPA, the number of

function calls outside FSQP. It also provide the number of best solutions found (all

methods), number of problems that could not be solved during the given time limit

(all methods) and the number of problems where ICOS or ALIAS/QUAD results is not

available. The number of Jacobian calculations used by Smear rule is displayed in the

table. It also illustrates the average percentage of solutions found in each tree level of

the adaptive IPA. These indicators are summarized as averages in the last block of

rows in Table 6.3.

Let us first compare the performance of the three rules in IPA under three tree

management schemes. On the average, in the adaptive and best-first tree management

 162

approaches IIR’s performance is better than Rule A and Smear. In the depth-first tree

management approach, the ranking of the rules are reversed. However, the best results

of all rules are obtained under the adaptive scheme. It is also observed that under the

adaptive scheme the average percentage of feasible solutions found is higher in early

stages of the search tree as compared to Rule A and Smear. The number of problems

where all feasible solutions are not found within the given time limit is smaller in the

adaptive scheme as compared to best-first and depth-first approaches.

A general observation on the implementation of the adaptive method is that the CPU

times are faster in this approach as compared to other tree management schemes even

when the number of FSQP calls and the number of function calls outside FSQP are

larger. There are two main reasons for this: although the maximum number of

iterations allowed for FSQP is limited to 100 for all versions of IPA, the number of

iterations taken by the FSQP under the adaptive scheme is smaller because it is

invoked in the right boxes where feasible solutions actually exist. A second reason is

that the adaptive scheme works with a smaller list of boxes to rank due to its

stagewise movement in the tree. Therefore, even in cases where the number of

functions and FSQP calls are the same, the adaptive scheme works faster than the

other two tree management methods.

When we observe results in the adaptive scheme on an individual basis, Rule A

performs best in Kin1-Modified and its performance is equivalent to IIR’s in Kincox

and Stewart_Gough. In Dietmaier, IIR is able to identify all 40 solutions in 1.259

STU’s whereas Smear finds them much earlier. Smear does not work well in

trigonometric expressions probably because the Jacobian is less discriminating in this

type of functions. In the trigonometric problem Direct, IIR requires much less

function calls outside FSQP than Rule A. Furthermore, in the problems where ladder

 163

type of constraints exist (Kin2 and Puma), IIR works better than Rule A. The reason

is that every constraint removes one variable from the previous one and adds a new

variable. Thus, IIR produces a larger set of variables to re-partition, the degree of

parallelism increases, resulting in reduced overestimation in sibling boxes. This puts

IIR at an advantage over other rules. However, this is not valid in all test problems.

The scale of parallelism differs among all Rules and a larger scale does not

necessarily imply better performance or vice versa. Every rule adjusts its own scale of

adaptive parallelism that may change from 2 (minimum number of variables to be

partitioned in all Rules) to 8.

When we compare the best IPA results (IIR-adaptive) with filtering/local consistency

methods, it is observed that in the ladder type constraints, (PUMA, and KIN2)

ALIAS/QUAD performs quite well. A good reason for the latter might be that these

constraints are very suitable for constraint propagation, each time reducing the

domain of one variable. In trigonometric expressions, filtering methods do not

produce good results. It is interesting that QUAD, which is particularly developed for

quadratic problems, is not as successful as IPA in the quadratic Stewart Gough. ICOS

is slower than ALIAS/QUAD in the three problems where they may be compared.

 164

Prob.

Name of the
Problem

D,
NE,
LE

Category Description # of
Sol. Source

1 Kin2

8,8,0 Quadratic 4 quadratic ladder
type equations,
4 highly dependent
quadratic equations

10 (Lebbah et al.
2003, Van-
Hentenryck
1997a)

2 Kin1-
Modified

6,6,0 Trigonom. Trigonometric,
highly non-linear,
high constraint
dependency

16

(COPRIN)

3 KinCox

4,4,0 Quadratic Quadratic, 2
constraints
independent

2 (COPRIN)

4 Direct
Kinematics

11,11
,0

Trigonom. 8 trigonometric, 3
quadratic high
constraint
dependency

2 (COPRIN)

5 Stewart-
Gough

9,6,3 Quadratic 6 quadratic, 3 linear
constraints,
3 quadratic
constraints are
independent

2 (Lebbah et al.
2003)

6 Puma

8,7,1 Quadratic 4 quadratic ladder
type equations,
4 highly dependent
quadratic equations

16 (COPRIN)

7 Dietmaier

12,12
,0

Quadratic 12 quadratic
equations,
high constraint
dependency

40 (COPRIN)

Table 6.1 Characteristics of the CCSP Applications.

(Note: D: Dimension, NE: Nonlinear Equations, LE: Linear Equations, NIE: Nonlinear
Inequality Equations, LIE: Linear Inequalities)

Observing these results, one can say (within the scope of the CCSP’s tested here) that

without advanced symbolic consistency techniques and substitution methods, the

proposed adaptive IPA (with IIR or Rule A) is as successful as ALIAS/QUAD. IIR

looks quite promising despite the fact it cannot guarantee immediate reduction of IFY

in sibling boxes when quadratic and trigonometric expressions exist in the CCSP

(refer to remarks 4.1 and 4.2 in Chapter 4). One can observe in Table 6.1, that all

tested CCSP’s have quadratic and trigonometric expressions.

 165

IC
O

S

0.
77

1

(=
4.

0)

0.
77

1

(=
1.

53
)

0.
10

0

A
LI

A
S

Q
U

A
D

0.
16

0.
39

9

0.
00

0

Sm
ea

r

0.
66

6

17
48

3.
27

(4
,3

)

23
06

2

0.
77

1

53
87

5.
1(

6,
4)

74
71

3

0.
00

1 13

2(
2,

2)

19
3

R
ul

e
A

0.
77

1

66
60

4.
18

(6
,2

)

11
39

74
7

0.
77

1

27
09

5.
64

(6
,2

)

57
13

17

0.
00

9

14
1

2(
2,

2)

31
04

D
ep

th
-f

ir
st

II
R

 R
ul

e

0.
77

1

89
77

3(
5,

3)

11
96

31
2

0.
77

1

54
53

3(
5,

3)

40
22

34

0.
77

1

27
96

6

2(
2,

2)

61
95

99

Sm
ea

r

0.
77

1

72
0

3.
32

(4
,3

)

63
69

0.
77

1

86
3

5.
23

(6
,4

)

16
27

0

0.
00

1 11

2(
2,

2)

14
5

R
ul

e
A

0.
77

1

64
3

4.
36

(6
,2

)

62
08

0.
19

8

32
7

3.
4(

4,
2)

44
91

0.
00

1 11

2(
2,

2)

14
3

W
or

st
-f

ir
st

II
R

 R
ul

e

0.
54

9

73
0

5.
2(

6,
5)

72
98

0.
09

9

25
4

4.
74

(6
,3

)

69
07

0.
00

1 9

2(
2,

2)

65

Sm
ea

r

0.
08

9

2 44
5

3.
23

(4
,3

)

65
77

0.
77

1

4

57
46

5.
08

(6
,4

)

12
17

88

0.
00

7

1 11

2(
2,

2)

14
5

R
ul

e
A

0.
49

8

2

45
83

4.
52

(6
,2

)

10
72

8

0.
05

0

3 31
7

3.
18

(6
,2

)

12
26

6

0.
00

0

1 3

2(
2,

2)

14
9

It
er

at
iv

e
de

ep
en

in
g

II
R

 R
ul

e

0.
12

8

2 99
3

5.
14

(6
,4

)

11
71

7

0.
06

2

4 29
9

4.
64

(6
,3

)

17
74

9

0.
00

0

1 13

2(
2,

2)

65

C
PU

 (S
T

U
)

N
o.

 o
f s

ta
ge

s

N
o.

 o
f S

Q
P

ca
lls

A
vg

.
no

.
va

rs
.

in

pa
ra

lle
l(m

ax
. ,

m
in

.)

N
o.

 o
f f

un
ct

io
n

ca
lls

C
PU

 (S
T

U
)

N
o.

 o
f s

ta
ge

s

N
o.

 o
f S

Q
P

ca
lls

A
vg

.
no

.
va

rs
.

in

pa
ra

lle
l(m

ax
. ,

m
in

.)

N
o.

 o
f f

un
ct

io
n

ca
lls

C
PU

 (S
T

U
)

N
o.

 o
f s

ta
ge

s

N
o.

 o
f S

Q
P

ca
lls

A
vg

.
no

.
va

rs
.

in

pa
ra

lle
l(m

ax
.,

m
in

.)

N
o.

 o
f f

un
ct

io
n

ca
lls

Pr
o

b.
 1 2 3

 166

IC

O
S

N
A

N
A

0.
05

9

A
LI

A
S

Q
U

A
D

0.
77

(=
12

.6
)

0.
27

7

0.
00

1

Sm
ea

r

0.
06

8 66

3(
3,

3)

88
1

0.
00

2 8

2(
2,

2)

14
5

0.
77

1

90
0

5.
1(

7,
2)

81
21

R
ul

e
A

0.
77

1

24
93

3.
09

(5
,2

)

18
29

16

0.
00

6 21

2.
5(

3,
2)

21
7

0.
01

9

10
5

2.
34

(6
,2

)

23
50

D
ep

th
-f

ir
st

II
R

 R
ul

e

0.
77

1

23
19

2.
7(

3,
2)

87
00

1

0.
00

3 10

2(
2,

2)

14
5

0.
02

0 99

6.
6(

8,
6)

28
66

Sm
ea

r

0.
11

0

11
6

3(
3,

3)

14
09

0.
00

5 12

2(
2,

2)

14
5

0.
77

1

86
0

5.
3(

7,
2)

82
97

R
ul

e
A

0.
50

4

38
0

2.
78

(3
,2

)

70
33

0.
00

4 13

2(
2,

2)

14
5

0.
01

5 77

3.
23

(6
,2

)

93
3

W
or

st
-f

ir
st

II
R

 R
ul

e

0.
02

1 20

2.
39

(3
,2

)

26
5

0.
00

5 13

2(
2,

2)

14
5

0.
00

9

14
5

6.
2(

7,
6)

27
41

Sm
ea

r

0.
77

1

3

13
05

3(
3,

3)

15
66

5

0.
00

2

1 12

2(
2,

2)

14
5

0.
77

1

2

15
89

5.
5(

7,
2)

15
10

9

R
ul

e
A

0.
03

8

2 12
6

2.
79

(4
,2

)

25
45

0.
00

2

1 13

2(
2,

2)

14
5

0.
00

8

1 75

3.
1(

6,
2)

85
7

It
er

at
iv

e
de

ep
en

in
g

II
R

 R
ul

e

0.
00

9

1 20

2.
5(

3,
2)

26
5

0.
00

2

1 13

2(
2,

2)

14
5

0.
00

3

1 28

6.
07

(7
,6

)

27
41

C
PU

 (S
T

U
)

N
o.

 o
f s

ta
ge

s

N
o.

 o
f S

Q
P

ca
lls

A
vg

.
no

.
va

rs
.

in

pa
ra

lle
l(m

ax
.,

m
in

.)

N
o.

 o
f f

un
ct

io
n

ca
lls

C
PU

 (S
T

U
)

N
o.

 o
f s

ta
ge

s

N
o.

 o
f S

Q
P

ca
lls

A
vg

.
no

.
va

rs
.

in

pa
ra

lle
l(m

ax
. ,

m
in

.)

N
o.

 o
f f

un
ct

io
n

ca
lls

C
PU

 (S
T

U
)

N
o.

 o
f s

ta
ge

s

N
o.

 o
f S

Q
P

ca
lls

A
vg

.
no

.
va

rs
.

in

pa
ra

lle
l(m

ax
.,

m
in

.)

N
o.

 o
f f

un
ct

io
n

ca
lls

Pr
o

b.
 4 5 6

Contd…

 167

IC
O

S

N
A

A
LI

A
S

Q
U

A
D

0.
03

9

Sm
ea

r

0.
51

9

55
3

4.
94

(6
,4

)

15
54

9

R
ul

e
A

0.
77

1

21
78

2.
5(

10
,2

)

79
18

54

D
ep

th
-f

ir
st

II
R

 R
ul

e

0.
77

1

24
48

4.
51

(6
,3

)

55
33

08

Sm
ea

r

0.
59

1

41
4

2(
2,

2)

58
82

R
ul

e
A

0.
77

1

14
29

4.
23

(1
0,

2)

23
93

5

W
or

st
-f

ir
st

II
R

 R
ul

e

0.
77

1

75
7

4.
23

(6
,3

)

12
77

7

Sm
ea

r

0.
41

8

2

11
95

4.
81

(6
,4

)

68
22

6

R
ul

e
A

0.
77

1

2

11
82

4.
4(

10
,2

)

25
13

1

It
er

at
iv

e
de

ep
en

in
g

II
R

 R
ul

e

0.
77

1

3

46
80

4.
31

(8
,3

)

51
56

8

C
PU

 (S
T

U
)

N
o.

 o
f s

ta
ge

s

N
o.

 o
f S

Q
P

ca
lls

A
vg

.
no

.
va

rs
.

in

pa
ra

lle
l(m

ax
. ,

m
in

.)

N
o.

 o
f f

un
ct

io
n

ca
lls

 #

Pr
o

b.
 7

T
ab

le
 6

.2
. C

om
pa

ri
so

n
of

 r
es

ul
ts

 fo
r

C
C

SP
 A

pp
lic

at
io

ns

Contd…

 168

IP - Adaptive tree management IP - Worst-First tree

management

IIR Rule Rule A Smear IIR Rule Rule A Smear
Avg. CPU (STU) 0.139 0.195 0.404 0.208 0.323 0.431
Avg. no. of stages 1.86 1.71 2.14 - - -
Avg. no. of SQP calls 863.71 899.86 1471.86 258.71 411.43 428.00
Avg. no. of function calls 12035.71 7403.00 3522.14 4314.00 6126.86 5502.43
No. of unsolved problems 1 1 3 1 2 2
% of unsolved problems 14.28 14.28 42.86 14.28 28.58 28.58
No. of best solutions found 3 3 2 0 0 0
% of best solutions found 42.86 42.86 28.58 0 0 0
Data not available 0 0 0 0 0 0

Avg. percentage of solutions found
Stage 1 71.96 65.35 57.50 - - -
Stage 2 12.68 16.78 25.54 - - -
Stage 3 9.52 5.35 1.65 - - -
Stage 4 1.79 - 1.65 - - -
Total 95.59 87.49 86.33 94.29 86.43 82.86

IP - Depth-First tree
management ALIAS

IIR Rule Rule A Smear QUAD
ICOS

Avg. CPU (STU) 0.554 0.445 0.400 0.235 0.425
Avg. no. of stages - - - - -
Avg. no. of SQP calls 6753.14 2043.86 1239.29 - -
Avg. no. of function calls 48780.7 384500.7 17253.43 - -
No. of unsolved problems 5 4 2 1 2
% of unsolved problems 71.42 57.15 28.58 14.28 50*
No. of best solutions found 0 0 1 3 0
% of best solutions found 0 0 14.28 42.86 0
Data not available 0 0 0 0 3

Avg. percentage of solutions found
Stage 1 - - - - -
Stage 2 - - - - -
Stage 3 - - - - -
Stage 4 - - - - -
Total 54.64 56.25 84.82

Table 6.3. Summary of Results for Kinematics benchmarks
* Percentage is calculated using the actual number of problems (Actual number of problems =
total no. of problems – no. of problems for which data is not available.)

6.2. Applications − Constrained Optimization Problem

Many important real world problems can be expressed in terms of a set of nonlinear

constraints that restrict the domain over which a given performance criterion is

optimized, that is, as a Constrained Optimization Problem (COP). In the general COP

with a non-convex objective function, discovering the location of the global optimum

 169

is NP-hard. Hence, locating feasible solutions in a non-convex feasible space is also

NP-hard. Solution approaches using derivatives developed for solving the COP might

often be trapped in infeasible and/or sub-optimal sub-spaces if the combined topology

of the constraints is too rugged. The same problem exists in the discovery of global

optima in non-convex bound-constrained global optimization problems. The COP has

augmented complexity as compared to bound-constrained problems due to the

restrictions imposed by highly non-linear relationships among variables.

Testing environment

All runs are executed on a PC with 256 MB RAM, 2.4 GHz P4 Intel CPU, on

Windows platform. The IP code is developed with Visual C++ 6.0 interfaced with

PROFIL interval arithmetic library (Knuppel 1994) and FSQP.

6.2.1. Description of the Problem

The following applications have been selected to test the performance of the proposed

IP.

1. Planar truss design (Hsu et al. 2003)

Consider the planar truss with parallel chords shown in Figure 6.3 under the action of

a uniformly distributed factored load p = 25kN/m, including the dead weight of

approximately 1 kN/m. The truss is constructed from bars of square hollowed cross-

section made of steel 37. For chord members, limiting tensile stresses are 190 Mpa

and for other truss members 165 MPa.

The members are divided into four groups according to the indices shown in Figure

6.3. The objective of this problem is to minimize the volume of the truss, subject to

stress and deflection constraints. Substituting material property parameters and the

maximum allowable deflection that is 3.77cm, the optimization model can be

 170

simplified. However, the original model is a discrete constrained optimization

problem (Hsu et al. 2003), which is converted into a continuous optimization problem

described below.

Maximize f = 0-(600*a1+2910.4*a2+750*a3+1747.9*a4) (cm3)

Subject to:

a1 ≥ 30.0cm2

a2 ≥ 24.0cm2

a3 ≥ 14.4cm2

a4 ≥11.2cm2

 313920/A1+497245/A2+22500/A3+67326/A4 ≤ 25200(kN-cm) (deflection constraint)

Search space: A1=[30, 1000]; A2=[24, 1000]; A3=[14.4, 1000]; A4=[11.2, 1000].

Here, ai is the area in cm2 with indices i=1, 2, 3, 4. The objective function is a simple

linear function, but the deflection constraint turns the feasible domain into a non-

convex one.

Hsu et al. (2003) report an optimal design point for the original discrete model as

a = (55, 37.5, 15, 15), and the minimum volume of the truss for this solution is

179608.5. However, for a continuous model, we find a minimum volume of the truss

as 176645.373 using the IP and other solvers used in the comparison.

Stress constraints

 171

A

B

C

D

E

F

G

H

J

K

h

P=25kN/m

1 12 2

2 2 2 2

2 2

3 3
4 4

4 4

4

4a=12m

A

B

C

D

E

F

G

H

J

K

h

P=25kN/m

1 12 2

2 2 2 2

2 2

3 3
4 4

4 4

4

4a=12m

Figure 6.3. Optimal design of a planar truss with parallel chords

Source: Hsu et al. 2003

2. Pressure Vessel Design (Hsu et al. 2003)

Figure 6.4 shows a cylindrical pressure vessel capped at both ends by hemispherical

heads. This compressed air tank has a working pressure of 3,000 psi and a minimum

volume of 750 feet3. The design variables are the thickness of the shell and head, and

the inner radius and length of the cylindrical section. These variables are denoted by

x1, x2, x3, and x4, respectively. The objective function to be minimized is the total cost,

including the material and forming costs expressed in the first two terms, and the

welding cost in the last two terms. The first constraint restricts the minimum shell

thickness and the second one, the spherical head thickness. The 3rd and 4th constraints

represent minimum volume required and the maximum shell length of the tank

respectively. However, the last constraint is redundant due to the given search

domain. The original model for this application is again a discrete constrained

optimization problem. The continuous model is provided below.

 172

Maximize f = 0-(0.6224*x1*x3* x4 + 1.7781*x1* x3
2

 + 3.1661* x1
2* x4 + 19.84*x1

2* x3)

Subject to:

- x1 + 0.0193*x3 ≤ 0

- x2 + 0.00954*x3 ≤ 0

(-π*x3
2*x4 – (4π*x3

3)/3)/1296000 + 1 ≤ 0

x4 – 240 ≤ 0

Search Space: X1= [1.125, 2]; X2 = [0.625, 2]; X3 = [40, 60]; X4 = [40, 120]

Figure 6.4. Pressure vessel design.

Source: Hsu et al. 2003

Hsu et al. (2003) list the reported optimal costs obtained by different formulations as

given in Table 6.4.

The least cost reported by IIR for designing a pressure vessel subjected to the given

constraints is 7198.006. Other solvers report the same objective function value.

 173

Problem Formulation Reported optimal solution Reference

Continuous -7198.01 Hsu et al. (2003)

-7442.02 Hsu et al. (2003)
Discrete

-8129.14 Sandgren (1988)

Mixed discrete -7198.04 Kannan and Kramer (1994)

Table 6.4. Reported optimal costs obtained by different formulations for pressure vessel
design (Hsu et al. 2003)

3. Simplified Alkylation Process (Berna et al. 1980, PrincetonLib)

This model describes a simplified alkylation process. The nonlinearities are bounded

in a narrow range and introduce no additional computational burden.

The design variables for the simplified alkylation process are olefins feed, isobutane

recycle, acid feed, alkylate yield, isobutane makeup, acid strength, octane number,

iC4 olefin ratio, acid dilution factor, F4 performance number, alkyate error, octane

error, acid strength error, and F4 performance number error. The objective function

maximizes profit per day. The constraints represent alkylate volumetric shrinkage

equation, acid material balance, isobutane component balance, alkylate definition,

octane number definition, acid dilution factor definition, and F4 performance number

definition. The model is provided below.

Maximize f = 5.04*x3*x4 + 0.35*x13 + 3.36*x14 – 6.3*x1*x2

Subject to:

x1 - 0.81971 x3 -0.81967 x14 = 0

-3x2 + x8*x12 = -1.33

22.2 *x8 + x7* x11= 35.82 (acid material balance)

 174

-0.325*x5 - 0.01098*x6 + 0.00038*x6
2 + x2*x10 = 0.57425

0.98*x4 - x5* (x4 + 0.01 x1*x7) = 0

x1*x9 – x3* (0.13167*x6 - 0.0067*x6
2 + 1.12) = 0

10*x13 + x14 – x3* x6 = 0 (isobutane component balance)

Search space:

X1= [1, 5]; X2= [0.9, 0.95]; X3= [0, 2]; X4= [0, 1.2]; X5= [0.85, 0.93]; X6= [3, 12];

X7= [1.2, 4]; X8= [1.45, 1.62]; X9= [0.99, 1.0101]; X10= [0.99, 1.0101];

X11= [0.9, 1.112]; X12= [0.99, 1.0101]; X13= [0, 1.6]; X14= [0, 2].

The optimal solution for alkylation process 1.765 (PrincetonLib).

4. Stratified Sample Design (PrincetonLib)

The problem is to find a sampling plan that minimizes cost and yields variances of the

population limited by an upper bound.

Maximize f= 0-((x1 + x2)+(x3 + x4))

Subject to

(0.16/x1)+(0.36/x2)+(0.64/x3)+(0.64/x4)-0.010085≤0

(4/ x1)+(2.25/ x2)+(1/ x3)+(0.25/ x1)-0.0401≤0

Search space:

X1= [100, 400000]; X2= [100, 300000]; X3= [100, 200000]; X4= [100, 100000]

The optimal solution for this problem is -725.479 (PrincetonLib).

5. Robot (Benhabib et al. 1987, PrincetonLib)

This model is designed for the analytical trajectory optimization of a robot with seven

degrees of freedom.

 175

Maximize f = 0-((x1-x8)2+(x2-x9)2+(x3-x10)2+(x4-x11)2+(x5-x12) 2+(x6-x13) 2+(x7-x14) 2)

Subject to

cos(x1)+ cos (x2)+ cos (x3)+ cos (x4)+ cos (x5)+ cos (x6)+0.5*cos (x7) =4

sin (x1)+ sin (x2)+ sin (x3)+ sin (x4)+ sin (x5)+ sin (x6)+0.5*sin(x7) = 4

Search space: Xi=[-10, 10]; i = 1, 2, 3, 4, …, 14.

The optimal solution for this problem is 0.0(PrincetonLib).

6.2.2. Overview of Solution Methods

Existing global optimization algorithms can be categorized as deterministic and

stochastic methods. Extensive surveys on global optimization exist in the literature

(Törn and Zilinskas 1989, and recently by Pardalos and Romeijn 2002). Although we

cannot cover the COP literature in detail within the scope of this paper, we can cite

deterministic approaches including Lipschitzian methods (Hansen et al. 1992, Hansen

and Jaumard 1995, Pinter 1997), branch and bound methods (Al-Khayyal and Sherali

2000), cutting plane methods (Tuy et al. 1985), outer approximation (Horst et al.

1992), primal–dual method (Floudas and Visweswaran 1993, Ben-Tal et al. 1994),

alpha-Branch and Bound approach (Androulakis et al. 1995), reformulation

techniques (Smith and Pandelides 1999), interior point methods (Morales et al. 2001,

Forsgren et al. 2002) and interval methods (Hansen 1992, Kearfott 1996c, Csendes

1997).

We show, on a test bed of practical applications, that the IIR with adaptive tree

management is a viable method in solving the general COP with equalities and

inequalities. The results obtained are compared with commercial software such as

Baron, Minos and other solvers interfaced with GAMS (www.gams.com).

 176

6.2.3. Numerical Results

The numerical results are provided in Table 6.4. We compare IP results with five

different solvers that are linked to the commercial software GAMS (www.gams.com)

and FSQP (Zhou and Tits 1996, Lawrence et al. 1997) code provided by AEM

(www.aemdesign.com/FSQPmanyobj.htm). The solvers used in this comparison are

Baron (Sahinidis 2003), Conopt (Drud 1996), LGO (Pinter 1997), Minos (Murtagh

and Saunders 1987) and Snopt (Gill et al. 1997).

For each application we report the absolute deviation from the global optimum

obtained at the end of the run and the CPU time taken for each run in Standard Time

Units (STU, Scherbina et al. 2002). One STU is equivalent to 229.819 seconds on our

machine. GAMS solvers are run until each solver terminates on its own without

restricting the CPU time taken or the number of iterations. FSQP is run with a

maximum number of iterations allowed, that is 100 in this case. However, in these

applications FSQP never reaches this iteration limit. IP is run until no improvement in

the CLB is obtained as compared with the previous stage of the search tree. However,

if a feasible solution has not been found yet, the stopping criterion becomes the least

feasibility degree of uncertainty, INFY.

In Table 6.5, we report additional information for IP. For each application, we report

the number of tree stages where IP stops, the number of times FSQP is invoked, the

average number of variables partitioned in parallel for a parent box (the maximum

and minimum numbers are also indicated in parenthesis), and the number of function

calls invoked outside FSQP. We provide two summaries of results obtained excluding

and including the robot application. The reason is that Baron is not enabled to solve

trigonometric models.

 177

While analyzing results, we observe that Snopt identifies the optimum solution for

four of the applications excluding the robot. However, its performance is inferior for

the robot as compared to IP and FSQP. In the robot application, FSQP identifies the

global optimum solution in the initial box itself (stage zero in IP). That is why IP

stops at the first stage. The performance of the local optimizers, Minos and Conopt, is

significantly inferior in this problem. In the pressure vessel and planar truss

applications, all GAMS solvers, IP and FSQP identify the global optimum taking short

CPU times (IP and Baron take longer CPU time). In Alkyl, Minos is stuck at a local

stationary point while BARON and IP take longer CPU times. In the Sample

application, LGO does not converge and FSQP ends up with a very inferior solution.

On the other hand, IP runs for 6 tree stages and results in an absolute deviation that is

compatible with those of Baron, Conopt and Minos.

When the final results summary is analyzed, we observe that IP’s performance is as

good as Baron’s (which is a complete and reliable solver) in identifying the global

optimum and CPU time. The use of FSQP in IP rather (rather than the Generalized

Reduced Gradient local search procedure available in Baron) becomes an advantage

for IP in the Robot. Furthermore, IP does not have any restrictions in dealing with

trigonometric functions. The impact of interval partitioning on performance is

particularly observed in the Sample application where FSQP fails to converge. For

these applications, the number of tree stages that IP has to run for is quite small (two)

except for the Sample. The average number of variables partitioned in parallel in IP

varies between 2 and 4. The dynamic parallelism imposed by the weighting method

seems to be effective as it is observed that different scales of parallelism are adopted

for different applications.

 178

Prob. Dim. Performance IIR FSQP Baron Conopt LGO Minos Snopt

Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 4 CPU(STU) 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 4 CPU(STU) 0.001 0.000 0.001 0.000 0.000 0.000 0.000

Deviation 0.000 0.000 0.000 0.000 0.000 1.765 0.000
3 14 CPU(STU) 0.263 0.000 0.292 0.000 0.003 0.000 0.000

Deviation 1.200 26706.5 1.158 1.201 ∞ 1.168 0.000
4 4 CPU(STU) 0.056 0.000 0.000 0.000 0.002 0.000 0.000

Summary

Avg. deviation 0.300 6676.63 0.290 0.300 0.000 0.733 0.000
Std. dev. for it 0.600 13353.25 0.579 0.601 0.000 0.881 0.000
Avg. CPU time 0.080 0.000 0.073 0.000 0.001 0.000 0.000
best solutions 3 3 3 3 3 2 4
% of best solutions 75 75 75 75 75 50 100
unsolved problems 0 0 0 0 1 0 0
% of unsolved problems 0 0 0 0 25 0 0

Deviation 0.000 0.000 27.1 5.463 343.022 13.391
5 14 CPU(STU) 0.000 0.000 NA 0.000 0.046 0.001 0.000
Final Summary

Avg. deviation 0.240 5341.300 0.299 5.659 1.366 69.191 2.678
Std. dev. for it 0.537 11943.510 0.579 11.994 2.732 153.078 5.989
Avg. CPU time 0.064 0.000 0.073 0.000 0.010 0.000 0.000
best solutions 4 4 3 3 3 2 4
% of best solutions 80 80 60 60 60 40 80
unsolved problems 0 0 1 0 1 0 0
% of unsolved problems 20 0 20 0 20 0 0

Table 6.5. Comparison of Results for constrained optimization applications.

The problem names (global optimum values) are Pressure Vessel (-7198.006), Planar

Truss (-176645.373), Alkyl (1.765), and Sample (-725.479), respectively. For the IIR

method the number of stages, FSQP calls, and the average number of variables in

parallel (maximal/minimal), and the number of function calls were (2, 18, 3.04/4.2,

402), (2, 27, 3/4.2, 257), (2, 631, 4.04/5.3, 8798), and (6, 917, 3.56/4.3, 12000),

respectively. The summary of the average results for the first 4 problems is: for the

number of stages is 3.000, the number of FSQP calls is 398.250, and the average

number of function calls is 5364.25. For the problem 5, robot optimization, the global

optimum was zero, and the efficiency measures (1, 1, 2.25/3.2, 62). The final

summary provides the following average figures: the number of stages is 2.600, the

 179

number of FSQP calls is 318.800, and the average number of function calls is

4303.800.

6.3. Summary of results

Table 6.6 illustrates the performance of the best strategies recommended for solving

CCSP and COP based applications from the field of kinematics, robotics, engineering

design and so on. It also illustrates the maximum size of the problems tested here.

Problem
Class Recommended

Strategy
Performance

measure
Performance

value

Maximum
problem

dimension
Best of IP
configuration

IIR_adaptive tree
management CPU time 0.139 11

CCSP Best of other
methods
/solvers

ALIAS / QUAD CPU time 0.235 12

Best of IP
configuration

IIR_adaptive_non-
penalty

Dev. From
optimality 0.240 14

COP
 Best of other

methods /
solvers

Baron Dev. From
optimality 0.290 14

Table 6.6. Summary of computational results on applications

In case of CCSP applications, we observe that IIR_adaptive tree management method

is the best IIR configuration and its performance is superior (almost half) as compared

to, that of ALIAS/QUAD.

For the COP applications, IIR_adaptive_non-penalty is the best IIR configuration and

its performance similar to Baron’s. The average deviation from the optimal solution

for Baron is close to IIR_adaptive tree management with non-penalty box ranking.

The overall performance of IIR is superior in solving CCSP application problems.

However, in case of the COP applications, IIR is almost as effective as Baron.

 180

Chapter 7

Conclusions and Future Recommendations

7.1. Conclusions

Global Optimization Problems are encountered in many scientific fields concerned

with industrial applications such as kinematics, chemical process optimization,

molecular design, and so on. When non-linear relationships among variables are

defined by problem constraints resulting in non-convex feasible spaces the problem of

identifying feasible solutions may become very hard. Consequently, finding the

location of the global optimum in the problem is more difficult. This research

develops a generic methodology that can solve BCOP, CCSP and COP. A new

subdivision direction selection rule (IIR) has been proposed in this research for bound

constrained optimization, continuous constraint satisfaction and constrained

optimization problems.

A variant of IIR, IIR_Widths, has also been proposed for bound constrained

optimization problems. The new variant considers interval width as well as sub-

expression bounds. In the BCOP, the proposed two rules target directly on the

uncertainty degree of the objective function with respect to the optimality. Reducing

these uncertainties as such results in the reliable detection of sub-optimal boxes,

thereby diminishing the number of boxes to be assessed.

The efficiency of the proposed variants is illustrated on well-known bound

constrained test functions and compared with established subdivision direction

selection methods from the literature.

 181

For constraint satisfaction and constrained optimization problems a new adaptive

search tree framework where nodes (boxes defining different variable domains) are

explored using a restricted hybrid depth-first and best-first branching strategy has

been proposed. This hybrid approach has also been used for activating local search in

boxes with the aim of identifying different feasible stationary points. The proposed

search tree management approach improves the convergence of the interval

partitioning method that is also supported by the new parallel subdivision direction

selection rule.

In the CCSP and COP, the proposed rule targets directly the uncertainty degrees of

constraints (with respect to feasibility) and the uncertainty degree of the objective

function (with respect to optimality). Reducing these uncertainties as such results in

the early and reliable detection of infeasible and sub-optimal boxes, thereby

diminishing the number of boxes to be assessed. Consequently, chances of identifying

local stationary points during the early stages of the search increase.

For continuous constraint satisfaction problems, the effectiveness of the proposed

interval partitioning algorithm has been compared with the published results of

established symbolic-numeric methods for solving CCSP on a number of state-of-the-

art benchmarks. The effectiveness has also been illustrated on several practical

applications.

For constrained optimization problems, the effectiveness of the proposed interval

partitioning algorithm has been illustrated on several state of the art benchmark

problems and also several practical applications and compared with professional

commercial local and global solvers. Empirical results have shown that this approach

is as good as available COP solvers.

 182

The contribution of this research can be briefly summarized as follows:

• A generic approach, IIR, has been proposed for BCOP, CCSP, and COP. This

approach makes use of information derived from the problem structure and no

additional information other than function ranges is needed.

• Numerical tests on a wide range of benchmark problems and commercial

optimization software show that IIR is successful in solving BCOP and COP

as well as the CSPs.

• In case of the BCOP, the average CPU time required for IIR_Widths is almost

one-fourth of Rule B. Similarly, in the CCSP, the average CPU time required

for IIR_adaptive tree management is half of ALIAS / QUAD’s.

• For the COP (non-trigonometric functions), the average deviation from the

optimal solution for Baron is close to IIR_adaptive tree management with non-

penalty box ranking. However, the difference in performance is not

statistically significant (at a 5% significance level). For trigonometric COP

problems, the average deviation from optimal solution for IIR_adaptive_non-

penalty is almost of the 1/1000 of Snopt.

• The adaptive tree management strategy proposed here can also be used in non-

interval partitioning algorithms such as Baron and LGO. It is effective in the

sense that it allows going deeper into selected promising parent boxes while

providing a larger perspective on how promising a parent box is by comparing

it to all other boxes available in the current stage’s box list.

7.2. Recommendations for Future Research

Future work that merits further investigation requires the following feature

developments.

 183

i. Ranking constraints in a constrained global optimization problem

One of the basic problems that most traditional techniques face in solving a non-

convex constrained optimization or constraint satisfaction problem is the slow

convergence leading to unacceptable response times for constraint systems. Feasible

solutions for constraint systems are found by constraint propagation methods which

reduce variable ranges by sequential substitution. The main reason behind the slow

convergence of constraint propagation methods is the waste of computations on an

inappropriate constraint, which does not result in a good reduction in the search space

(Lhomme et al. 1998). This brings about motivation to develop new approaches by

which a ranking approach is proposed in solving the constrained optimization

problem or constraint satisfaction problems before processing them. The new

approach will define a performance index for each constraint based on the pending

status and sub-expression complexity of the constraint. Then, constraints will be

sorted based on their degree of uncertainty and sub-expression complexity. This prior

step will improve the efficiency of any methodology used for solving the COP or

CCSP irrespective of the application field.

ii. Dealing with discrete problems

Vaidyanathan et al. (1996) propose a methodology for solving discrete problems

using interval analysis, which is a modification made to the basic constrained

optimization problem solving algorithms. However, research in this field is very

limited.

The development of new methodologies for solving nonlinear discrete problems will

definitely be a good contribution in this field. The discrete domain defined for a given

global optimization problem can be assumed as a continuous domain (box). However,

 184

the partitioning of the domain would be modified based on the discrete values defined

for a given variable. This new approach may help in faster convergence because of

shorter pending lists preserved when compared to a traditional discrete solution

algorithm. Also, the new adaptive tree management proposed in this thesis would

reduce the limited use of memory and CPU time for large-scale nonlinear discrete

problems.

This problem has many industrial applications in different fields such as chemical

engineering, power transmission, planning, and so on, which need extensive

computations with existing solution techniques.

iii. Analysis of different merit functions for pending box ranking

The current merit function defined in this thesis is a static penalty function. However,

it is worthwhile to try different merit functions such as dynamic and adaptive penalty

functions defined in the literature (Joines and Houck 1994, Michalewicz and Attia

1994, Carlson et al. 1998, Morales and Quezada 1998, Yeniay 2005). The merit

function an importance element that may improve algorithm efficiency in the box

selection procedure. It may also improve the convergence of the algorithm through

faster deletion of infeasible subspaces.

The new merit function analysis will provide a robust merit function for the

methodology defined in this thesis. This will help the algorithm to solve large-scale

nonlinear nonconvex problems.

iv. Extension to mixed integer nonlinear programming problems

Vaidyanathan et al. (1996) propose a methodology for solving discrete problems

using interval analysis, which is a modification made to the basic constrained

 185

optimization problem solving algorithms. However, research in this field is very

limited.

Similar to pure problems described previously, the discrete domain defined for a

given problem can be assumed as a continuous domain like any other continuous

domain, but partitioning of the discrete variables would be modified while continuous

variables would be partitioned as usual.

v. Extension of adaptive tree management strategy to other solvers

Tree management is one of the factors that influences the efficiency of any

partitioning algorithm. The new adaptive tree management strategy proposed in this

thesis can also be used in non-interval partitioning algorithms such as Baron and

LGO. It is effective in the sense that it allows going deeper into selected promising

parent boxes while providing a larger perspective on how promising a parent box is

by comparing it to all other boxes available in the current stage’s box list.

 186

 References

Aarts, E., and Korst, J. (1989). Simulated annealing and boltzmann machines. J.

Wiley and Sons.

Adjiman, C.S., Dallwig, S., Floudas, C.A., and Neumaier, A. (1998a). A global

optimization method: alphaBB-for general twice-differentiable constrained NLPs - I.

Theoretical Advances. Computers and Chemical Engineering, 22: 1137-1158.

Adjiman, C.S., Androulakis, I.P., and Floudas, C.A. (1998b). A global optimization

method, alphaBB, for general twice-differentiable constrained NLP’s: II -

Implementation and Computational Results. Computers and Chemical Engineering,

22: 1159 – 1179.

Adjiman, C.S., and Floudas C.A. (2001). The alphaBB global optimization algorithm

for nonconvex problems: an overview. In Migdalas, A., Pardalos, P.M., Varbrand, P.,

editors, From local to global optimization, London, Kluwer Academic, Pages: 155 -

186

Alefeld, G., and Herzberger, J. (1983). Introduction to interval computations.

Academic Press Inc. New York, USA.

Allgower, E.L., and Georg, K. (1980). Simplicial and continuation methods for

approximating fixed points and solutions to systems of equations. SIAM Review, 22:

28-85.

Al-Khayyal, F.A., and Sherali, H.D. (2000). On finitely terminating branch-and-

bound algorithms for some global optimization problems. SIAM Journal on

Optimization, 10: 1049-1057.

Anderson, N., and Walsh, G. (1986). A graphical method for a class of branin

trajectories. Journal of Optimization Theory and Applications, 49: 367-374.

Androulakis, I.P., Maranas, C.D., and Floudas, C.A. (1995). αBB: A global

optimization method for general constrained nonconvex problems. Journal of Global

Optimization, 7: 337-363.

Arminjo, L.(1966). Minimization of functions having continuous partial derivates.

Pacific J. Math., 16:1-3.

 187

Baldi, P. (1995). Gradient descent learning algorithm overview: a general dynamical

systems perspective. IEEE Transactions on Neural Networks, 6: 182-195.

Balogh, J., and Tóth, B. (2005) Global optimization on stiefel manifolds: a

computational approach. Central European Journal of Operations Research, 13: 213-

232.

Baritompa, W. (1993). Customized methods for global optimization – a geometric

view point. Journal of Global Optimization, 3: 193-212.

Baritompa, W., and Cutler A. (1994). Accelerations for global optimization covering

methods. Journal of Global Optimization, 4: 329-341.

Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (1993). Nonlinear Programming.

Theory and Algorithms, John Wiley & Sons, Inc., New York.

Beckernad, R.W., and Lago, G.W. (1970). A global optimization algorithm. In Proc.

of the 8th Allerton Conf. on Circuits and Systems Theory, pp. 3-12, Monticello,

Illinois.

Benhamou, F., McAllester, D., and Van Hentenryck, P. (1994). CLP (Intervals)

revisited. Proceedings of ILPS’94, International Logic Programming Symposium,

pp. 124-138.

Benhamou, F., and Older, W.J. (1997). Applying interval arithmetic to real, integer

and boolean constraints. Journal of Logic Programming. 32: 1-24.

Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J-F. (1999). Revising hull

and box consistency. Proc. of 16th Int. Conf. on Logic Programming, 230-244, Los

Cruces, USA.

Benhabib, B., Fenton, R.G., and Goldberg, A.A. (1987). Analytical trajectory

optimization of seven degrees of freedom redundant robot. Transactions of the

Canadian Society for Mechanical Engineering, 11: 197-200.

Ben-Tal, A., Eiger, G.., and Gershovitz, V. (1994). Global optimization by reducing

the duality gap. Math. Prog., 63: 193-212.

Berna, T., Locke, M., and Westerberg, A.W. (1980). A new approach to optimization

of chemical processes. American Institute of Chemical Engineers Journal, 26: 37-43.

 188

Berner, S. (1996). New results on verified global optimization. Computing, 57: 323-

343.

Betro, B., and Schoen, F. (1987). Sequential stopping rules for multistart algorithm in

global optimization. Mathematical Programming, 38: 271-286.

Betro, B., and Schoen, F. (1992). Optimal and sub-optimal stopping rules for the

multistart algorithm in global optimization. Mathematical Programming, 57: 445-458.

Boender, C.G.E., Rinnooy kan, A.H.G., Stougie, L., and Timmer, G.T. (1982). A

stochastic method for global optimization. Mathematical programming, 22: 125-140.

Boender, C.G.E., and Rinnooy kan, A.H.G. (1987). Bayesian stopping rules for multi-

start global optimization. Mathematical programming, 37: 59 - 80.

Boender, C.G.E., and Rinnooy kan, A.H.G. (1991). On when to stop sampling for the

maximum. Journal of Global Optimization, 1: 331-340.

Bonnans, J.F., Panier, E., Tits, A.L., and Zhou, J.L. (1992). Avoiding the maratos

effect by means of a nonmonotone line search: II. Inequality Problems - Feasible

Iterates. SIAM Journal on Numerical Analysis, 29: 1187-1202.

Breiman, L. and Cutler, A. (1993). A deterministic algorithm for global optimization.

Mathematical Programming, 58: 179-199.

Broyden, C.G. (1972). Quasi-newton methods. In Murray, W., eds., Numerical

methods for Unconstrained Optimization, pp. 87-106, Academic Press, New York.

Buchberger, B. (1985). Grobner bases: an algorithmic method in polynomial ideal

theory. In Mutidimensional Systems Theory, pp. 184-232, D. Reidel Publishing Co.

Burkard, R.E., Hamacher, H., and Rote, G. (1992). Sandwich approximation of

univariate convex functions with an application to separable convex programming.

Naval Research Logistics, 38: 911-924.

Caprani, O., Godthaab, B., and Madsen, K. (1993). Use of a real-valued local

minimum in parallel interval global optimization. Interval Computations, 2: 71–82.

Carlson, S., Shonkwiler, R., Babar, S., and Aral, M. (1998). Annealing a genetic

algorithm over constraints. SMC 98 Conference. (http://www.math.gatech.edu/shenk/

body.html.)

 189

Castellet, A. (1998). Solving inverse kinematics problems using an interval method.

PhD Thesis, Universitat Politechnica de Catalunya, Barcelona, Spain.

Casado, L.G., García, I., and Csendes, T. (2000). A new multisection technique in

interval methods for global optimization. Computing, 65: 263-269.

Casado, L.G., Martinez, J.A., and Garcia, I. (2001a). Experiments with a new

selection criterion in a fast interval optimization algorithm. J. Global Optimization,

19: 247-264.

Casado, L.G., Garcia, I., and Csendes, T. (2001b). A heuristic rejection criterion in

interval methods for global optimization. BIT , 41: 683-692.

Ceberio, M., and Granvilliers, L. (2002). Solving nonlinear equations by abstraction,

gaussian elimination, and interval methods. Proceedings of Frontiers of Combining

Systems, Fourth International Workshop, FroCoS 2002, Alessandro Armando ed.

LNAI, Springer, Italy, 2309: 117-131.

Cetin, B.C., Barben, J., and Burdick, J. W. (1993). Terminal repeller unconstrained

subenergy tunneling (TRUST) for fast global optimization. Journal of Optimization

Theory and Applications, 77: 97-126.

Chabert, G., Trombettoni, G., and Neveu, B. (2005). Box-set consistency for interval

based constraint problems. Symposium on Applied Computing, SAC 2005, Proc. Of

the 2005 ACM symposium on Applied Computing, pp. 1439-1443, ACM Press, NY,

USA.

Chazan, D., and Miranker, W.L. (1970). A nongradient and parallel algorithm for

unconstrained minimization. SIAM Journal on control, 8: 207-217.

Cleary, J.G. (1987). Logical arithmetic. Future Computing Systems, 2: 125-149.

Coconut: http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.

html.

Conn, A. R., Gould, N., and Toint, Ph.L. (1994) A note on exploiting structure when

using slack variables. Math. Prog., 67: 89–99.

Corana, A., Marchesi, M., Marini, C., and Ridella, S. (1987). Minimizing multimodal

functions of continuous variables with the simulated annealing algorithm. ACM

Trans. of Mathl. Software, 13: 262-279.

 190

Csallner, A.E., and Csendes, T. (1996). On the convergence speed of interval methods

for global optimization. Computers, Mathematics and Applications, 31: 173-178.

Csallner, A.E., Csendes, T., and Markót, M.C. (2000a). Multi-section in interval

branch and bound methods for global optimization I. Numerical tests. J. Global

Optimization, 16: 219-228.

Csallner, A.E., Csendes, T., and Markót, M.C. (2000b). Multi-section in interval

branch and bound methods for global optimization II. Theoretical results. J. Global

Optimization, 16: 371-392.

Csendes, T., and Pinter, J. (1993). The impact of accelerating tools on the interval

subdivision algorithm for global optimization. European Journal of Operational

Research, 65: 314-320.

Csendes, T., and Ratz, D. (1996). A review of subdivision selection in interval

methods for global optimization. ZAMM , 76: 319-322.

Csendes, T., and Ratz, D. (1997). Subdivision direction selection in interval methods

for global optimization. SIAM Journal of Numerical Anal., 34: 922-938.

Csendes, T., Klatte, R., and Ratz, D. (2000). A posteriori direction selection rules for

interval optimization methods. CEJOR, 8: 225-236.

Csendes, T. (2001). New subinterval selection criteria for interval global optimization.

Journal of Global Optimization, 19: 307-327.

CUTEr: A constrained and unconstrained testing environment, revisited.

http://cuter.rl.ac.uk/cuter-www/problems.html

Dallwig, S., Neumaier, A., and Schichl, H. (1997). GLOPT - A program for

constrained global optimization. In Bomze, I. M., Csendes, T., Horst, R., and

Pardalos, P. M., editors, Developments in Global Optimization, pp. 19-36, Kluwer,

Dordrecht.

Dantzig, G. B. (1963). Linear programming and extensions. Princeton University

Press, Princeton, New Jersey.

De Jong, K. (1975). An analysis of the behaviour of a class of genetic adaptive

systems. PhD Thesis, University of Michigan, Ann Arbor.

 191

Dekkers, A. and Aarts, E. (1991). Global optimization and simualted annealing.

Mathematical Programming, 50: 367-393.

Dennis, J.E., and Schnabel, R.B. (1983). Numerical methods for unconstrained

optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs, New Jersey.

Dennis, J.E., and Torczon, V. (1991). Direct search methods on parallel computers.

SIAM Journal of Optimization, 1: 448-474.

Didrit, O., Petitot, M., and Walter, E. (1998). Guaranteed solution of direct kinematic

problems for general configurations of parallel manipulator. IEEE Trans. On Robotics

and Automation, 14: 259-266.

Diener, I., and Schaback, R. (1990). An extended continuous newton method. Journal

of Optimization Theory and Applications, 67: 57-77.

Dietmaier, P. (1998). The Stewart–Gough platform of general geometry can have 40

real postures, Proceedings of ARK, Strobl, Austria, pp. 7–16.

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1: 269-271.

Dillenburg, J.F., and Nelson, P.C. (1993). Improving the efficiency of depth-first

search by cycle elimination. Information Processing Letters, 45: 5-10.

Dillenburg, J.F., and Nelson, P.C. (1994). Perimeter search. Artificial Intelligence, 65:

165-178.

Doran, J.E., and Michie, D. (1966). Experiments with the graph traverser program.

Proceedings of the Royal Society A, 294: 235-259.

Drud, A.S. (1996). Conopt: A system for large scale nonlinear optimization, reference

manual for conopt subroutine library, 69p, ARKI Consulting and Development A/S,

Bagsvaerd, Denmark.

Epperly, T.G. (1995). Global optimization of nonconvex nonlinear programs using

parallel branch and bound. Ph.D dissertation, University of Wisconsin-Madison,

USA.

Evtushenko, Y.G., Potapov, M.A., and Korotkich, V.V. (1992). Numerical methods

for global optimization. In Floudas, C. A., and Pardalos, P. M. editors, Recent

advances in Global Optimization. pp. 274-297. Princeton University Press.

 192

Faugere, J.C., and Lazard, D. (1995). The combinatorial classes of parallel

manipulators, Mechanism and Machine Theory, 30: 765-776.

Fernández, J., and Pelegrin, B. (2001). Using interval analysis for solving planar

single facility location problems: new discarding tests, Journal of Global

Optimization, 19: 61-81.

Floudas, C.A., and Pardalos, P.M. (1992). Recent advances in global optimization.

Princeton University, USA.

Floudas, C.A., and Visweswaran, V. (1993). A primal-relaxed dual global optimization

approach. J. Opt. Th. Appl., 78:187.

Floudas, C.A., and Pardalos, P.M. (1996). State of the art in global optimization :

computational methods and applications. Kluwer Academic Publishers.

Forsgren, A., Gill, P.E., and Wright M.H. (2002). Interior methods for nonlinear

optimization. SIAM Review, 44: 525-597.

Freuder, E.C. (1978). Synthesizing constraint expressions. Communications of the

ACM, 21: 958-966.

Gablonsky, J.M. (2001). DIRECT version 2.0 userguide. Technical Report, CRSC-

TR01-08,Center for Research in Scientific Computation, North Carolina State

University, USA.

Gablonsky, J.M., and Kelley, C.T. (2001). A locally-biased form of the DIRECT

algorithm. Journal of Global Optimization, 21: 27-37.

Ge, R.P., and Qin, Y.F. (1987). A class of filled functions for finding global

minimizers of a function of several variables. Journal of Optimization Theory and

Applications, 54: 241-252.

Gill, P.E., Murray, W., and Saunders, M.A. (1997). Snopt: An SQP algorithm for

large-scale constrained optimization, Numerical Analysis Report 97-2, Department of

Mathematics, University of California, San Diego, La Jolla, CA.

Glover, F. (1980). Tabu Search – Part I. ORSA J. Computing, 1: 190-206.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley.

 193

Gourdin, E., Hansen, P., and Jaumard, B. (1994). Global optimization of multi-variate

Lipschitz functions: a survey and computational comparison. Les Cahiers du

GERAD, McGill University, Montreal.

Granvilliers, L. (1998). Consistances locales et transformations symboliques de

contraintes d'intervalles. Phd Thesis, Laboratoire d'Informatique Fondamentale

d'Orléans, Université d'Orléans.

Granvilliers, L. (2001). On the combination of interval solvers. Reliable Computing,

7: 467-483.

Granvilliers, L., Monfroy, E., and Benhamou, F. (2001). Symbolic-interval

cooperation in constraint programming. International Conference on Symbolic and

Algebraic Computation, Proceedings of the 2001 international symposium on

Symbolic and algebraic computation, pp. 150-166. Ontario, Canada.

Granvilliers, L. (2004). An interval component for continuous constraints. Journal of

Computational and Applied Mathematics, 162: 79–92.

Granvilliers, L., and Benhamou, F. (2006). RealPaver: An interval solver using

constraint satisfaction techniques. ACM Transactions on Mathematical Software, 32 :

138-156.

Grossmann, I.E. (1996). Global optimization in engineering design. Kluwer

Academic Publishers.

Hammer, R., Hocks, M., Kulish, U., and Ratz, D. (1993). Numerical toolbox for

verified computing I. Springer-Verlag, Berlin.

Hansen, E. (1968). On solving systems of equations using interval analysis. Math.

Comput., 22: 374-384.

Hansen, E., and Sengupta, S. (1980). Global constrained optimization using interval

analysis. In Nickel, K. L., Interval Mathematics, Academic Press, New York, pp. 25-

47.

Hansen, E. (1992). Global optimization using interval analysis. Marcel Dekker Inc.

Hansen, P., Jaumard, B., and Lu, S. (1992). Global optimization of univariate

Lipschitz functions: I. Survey and Properties. Math. Prog., 55: 251.

 194

Hansen, E., and Walster, G.W. (1993). Bounds for lagrange multipliers and optimal

points. Comput. Math. Appl., 25: 59.

Hansen, P., and Jaumard, B. (1995). Lipschitz optimization. In Horst, R., and

Pardalos, P. M., editors, Handbook of Global Optimization, pp. 407-493, Kluwer

Academic Publishers, Dordrecht.

Hart, P.E., Nilsson, N.J., and Raphael, B. (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4: 100-107.

He, L., and Polak, E. (1993). Multistart method with estimation scheme for global

satisfying problems. Journal of Global Optimization, 3: 139-156.

He, J., Watson, L. T., Ramakrishnan, N., Schaffer, C.A., Verstak, A., Jiang, J., Bae,

K., and Tranter, W. (2002). Dynamic data structures for a direct search algorithms.

Computational Optimization and Applications, 23: 5-25.

Hestenes, M. R. (1980). Conjugate direction methods in global optimization.

Springer-verlag.

Horst, R., Thoai, N.V., and De Vries, J. (1992). A new simplicial cover technique in

constrained global optimization. J. Global Opt., 2: 1-19.

Horst, R., Pardalos, P.M. (1995). Handbook of global optimization. Kluwer Academic

Publishers, Dordrecht, The Netherlands.

Horst, R., Pardalos, P.M., and Thoai, N.V. (2000). Introduction to global

optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Horst, R., and Tuy, H. (2003). Global optimization: Deterministic approaches.

Springer-Verlag, Berlin.

Hsu, Y-L., Wang, S-G., and Yu, C-C. (2003). A sequential approximation method

using neural networks for engineering design optimization problems. Engineering

Optimization, 35: 489-511.

Husty, M. L. (1996). An algorithm for solving the direct kinematics of Stewart Gough

platform. Mechanism and Machine Theory, 31: 365-380.

Huyer, W., and Neumaier, A. (1999). Global optimization by multilevel coordinate

search. Journal of Global Optimization, 14: 331-355.

 195

Hyvönen, E. (2001). Interval input and output. Scientific computing, validated

numerics, interval methods. In Krämer and Gudenberg, W. V., editors, pp. 41-51.

Kluwer Academic Publishers, New York.

Ilog. (2001). Ilog optimization suite. white paper. Available via http://www.ilog.fr.

Ingber, L. (1994). Simulated annealing: Practice versus theory. J. Mathl. Comput.

Modelling, 18: 29-57.

Ingber, L. (1996). Adaptive simulated annealing (ASA): Lessons learned. Control and

Cybernetics, 25: 33-54.

Innocenti, C. (2001). Forward kinematics in polynomial form of the general Stewart

Gough platform. ASME J. of Mechanical Design, 123: 254-260.

Jansson, C., and Knüppel, O. (1992). A global minimization method: The multi-

dimensional case. Technical Report 92.1, Forschungsschwerpunkt Informations- und

Kommunikationstechnik, TU Hamburg-Harburg.

Jansson, C. (1994). On self validating methods for optimization methods. In

Herzberger, J., editor, Topics in Validated Computations — Studies in Computational

Mathematics, pp. 381-438, North-Holland, Amsterdam.

Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001). Applied interval analysis.

Springer-Verlag, Berlin.

Joines, J. and Houck, C. (1994). On the use of non-stationary penalty functions to

solve non-linear constrained optimization problems with GAs. Proceedings of the

First IEEE International Conference on Evolutionary Computation, IEEE Press, 579-

584.

Jones, D.R., Perttunen, C.D., and Struckman, B.E. (1993). Lipschitzian optimization

without Lipschitz constant. Journal of Optimization Theory and Applications, 79:

157-181.

Kahan, W.M. (1968). A more complete interval arithmetic. Lecture notes for summer

course at the University of Michigan.

Kannan, B.K., and Kramer, S.N. (1994). An augmented Lagrange multiplier based

method for mixed integer discrete continuous optimization and its applications to

mechanical design. Journal of Mechanical Design, 116: 405-411.

 196

Kearfott, R.B. (1979). An efficient degree-computation method for a generalized

method of bisection. Numerical Mathematics, 32: 109-127, 1979.

Kearfott, R.B. (1990). Interval newton / generalized bisection when there are

singularities near roots. Annals of Operations Research, 25: 181-196.

Kearfott R.B., and Manuel, N.III. (1990). INTBIS: A portable interval

newton/bisection package. ACM Trans. on Mathematical Software, 16: 152-157,

1990.

Kearfott, R.B. (1991). Decompostion of arithmetic expressions to improve the

behaviour of interval iteration for nonlinear systems. Computing, 47: 169-191, 1991.

Kearfott, R.B. (1992). An interval branch and bound algorithm for bound constrained

optimization problems. Journal of Global Optimization, 2: 259–280.

Kearfott, R.B., and Xing, Z. (1994). An interval step control for continuation

methods. SIAM J. Num. Anal., 31: 892-914, 1994.

Kearfott, R.B., and Kreinovich, V. (1996). Applications of interval computations.

Applied Optimization, Kluwer, Dordrecht, Netherlands.

Kearfott, R.B. (1996a). A review of techniques in the verified solution of constrained

global optimization problems. In Kearfott, R. B. and Kreinovich, V. editors,

Applications of Interval Computations, Kluwer, Dordrecht, Netherlands, pp. 23-60.

Kearfott, R.B. (1996b). Test results for an interval branch and bound algorithm for

equality-constrained optimization, In Floudas, C., and Pardalos, P., editors, State of

the Art in Global Optimization: Computational Methods and Applications, Kluwer,

Dordrecht, pp. 181-200.

Kearfott, R.B. (1996c). Rigorous global search: Continuous problems, Kluwer

Academic Publishers, Netherlands.

Kearfott, R.B. (1996d). On verifying feasibility in equality constrained optimization

problems. preprint. http://interval.louisiana.edu/preprints/big_constrai.pdf

Kearfott, R.B. (1997). Empirical evaluation of innovations in interval branch and

bound algorithms for nonlinear algebraic systems. SIAM Journal on Scientific

Computing, 18: 574-594.

 197

Kearfott, R.B., and Walster, G.W. (2000). On stopping criteria in verified non-linear

systems or optimization algorithms. ACM TOMS, 26: 373–389.

Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., and van

Hentenryck, P. (2002). Standardized notation in interval analysis. preprint.

http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz

Kearfott, R.B. (2003). An overview of the GlobSol package for verified global

optimization. Talk given for the Department of Computing and Software, McMaster

University.

Kearfott, R.B. (2005). Improved and simplified validation of feasible points:

Inequality and equality constrained problems. submitted to Mathematical

Programming. http://interval.louisiana.edu/preprints/2005_simplified_feasible_point

_verification.ps

Kearfott, R.B. (2006). Discussion and empirical comparisons of linear relaxations and

alternate techniques in validated deterministic global optimization. Optimization

Methods and Software, 21:715-731.

Kinsella, J.A. (1992). Comparison and evaluation of variants of the conjugate gradient

methods for efficient learning in feed-forward neural networks with backward

propagation. Neural Networks, 3: 27-35.

Kirkpatrick, A., Gelatt Jr., C.D., and Vechi, M.P. (1983). Optimization by simulated

annealing. Science, 220: 671-680.

Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., and Rauch, M. (1993). C-XSC - A

C++ Class Library for Extended Scientific Computing. Springer-Verlag, Heidelberg-

New York.

Knuppel, O. (1994). PROFIL/BIAS – A fast interval library. Computing, 53: 277-287.

Körf, R.E. (1985) Depth iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, 27: 97-109.

Körf, R.E. (1998). Artificial intelligence search algorithms. Algorithms and Theory of

Computation Handbook, CRC Press, 1998.

Lawrence, C.T., Zhou, J.L., and Tits, A.L. (1997). User's guide for CFSQP version

2.5: A C code for solving (Large scale) constrained nonlinear (Minimax) optimization

 198

problems, generating iterates satisfying all inequality constraints. Institute for

Systems Research, University of Maryland, Technical Report TR-94-16r1, College

Park, MD 20742.

Lawrence, C.T., and Tits, A.L. (2001). A computationally efficient feasible sequential

quadratic programming algorithm. SIAM J. Optimization, 11: 1092-1118.

Lebbah, Y., and Lhomme, O. (2002). Accelerating filtering techniques for numeric

CSPs. Artificial Intelligence, 139: 109-132.

Lebbah, Y., Michel, C., and Rueher, M. (2003). Global filtering algorithms based on

linear relaxations. 2nd International Workshop on Global Constrained Optimization

and Constraint Satisfaction (Cocos'03), Lausanne, Switzerland, pp.18-21.

Lebbah, Y. ICOS (Interval constraints solver), WWW-document (2003). http://www-

sop.inria.fr/coprin/ylebbah/icos.

Lee, T.-Y., and Shim, J.-K. (2001). Elimination based solution method for the forward

kinematics of the general Stewart Gough platform. Proceedings of the 2nd workshop

on computational kinematics, Seoul, Korea, pp. 259-267.

Le Grand, S.M., and Merz Jr., K.M. (1993). The application of the genetic algorithm

to the minimization of potential energy functions. Journal of Global Optimization, 3:

49-66.

Levy, A.V., Montalvo, A., Gomez, S., and Calderon, A. (1981). Topics in global

optimisation. Lecture Notes in Mathematics, 909: 18-33.

Lewis, R.M., Torczon, V., and Trosset, M.W. (2000). Direct search methods: Then

and now. Journal of Computational and Applied Mathematics,124: 191-207.

Leyffer, S., Lopez-Calva, G., and Nocedal, J. (2004). Interior methods for

mathematical programs with complementarily constraints. ANL/MCS-P1211-1204,

Argonne National Laboratory, Mathematics and Computer Science Division.

Leyffer, S. (2005). The penalty interior point method fails to converge. Optimization

Methods and Software. 20: 559-568.

Lhomme, O. (1993). Consistency techniques for numeric CSPs'. In Bajcsy, R., editor,

Proceedings of the 13th IJCAI, pp. 232-238, IEEE Computer Society Press.

 199

Lhomme, O., Gotlieb, A., and Rueher, M. (1998). Dynamic optimization of interval

narrowing algorithms. Journal of Logic Programming, 37: 165-183.

Liu, M.D., and Tits, A.L. (1997). User's guide for ADIFFSQP version0.9: A utility

program that allows the user of the FFSQP constrained nonlinear optimization

routines to conveniently invoke the computational differentiation preprocessor

ADIFOR2.0. Institute for Systems Research, University of Maryland, College Park,

MD 20742.

Lüthi, J., and Lladó, C.M. (2003). Splitting techniques for interval parameters and

their application to performance models. An International Journal for Performance

Evaluation, 51: 47-74.

Manocha, D., and Canny, J.F. (1994). Efficient inverse kinematics for general 6R

manipulators. IEEE Journal on Robotics and Automation,10: 648-657.

Markót, M.C. (2003). Reliable global optimization methods for constrained problems

and their application for solving circle packing problems. PhD dissertation.

University of Szeged, Hungary.

Markót, M.C., Fernández, J., Casado, L.G., and Csendes, T. (2006). New interval

methods for constrained global optimization. Mathematical Programming, 106: 287-

318.

Mayne, D.Q., and Polak, E. (1976). Feasible direction algorithms for optimization

problems with equality and inequality constraints. Mathematical Programming, 11:

67-80.

Meewella, C.C., and Mayne, D.Q. (1989). An algorithm for global optimization of

Lipschitz functions. Journal of Optimization Theory and Applications, 61: 247-270.

Meier, M., and Schimpf, J. (1993). ECLiPSe user manual. Tech. Rep. ECRC-93-6,

ECRC (European Computer-industry Research Centre), Munich, Germany.

Merlet, J-P. (1998). Determination of the presence of singularities in 6D workspace of

a Gough parallel manipulator. In ARK, pp. 39-48, Strobl, 29 Juin-4 Juillet.

Merlet, J.-P. (2000). ALIAS: An interval analysis based library for solving and

analyzing system of equations. Séminaire Systèmes et équations algébriques,

Toulouse, Automation pp. 1964–1969.

 200

Merlet, J.-P. (2001). An improved design algorithm based on interval analysis for

parallel manipulator with specified workspace. Proc. of the IEEE Int. Conf. on

Robotics and Automation, Seoul, South Korea, pp. 1289–1294, 2001.

Merlet, J.-P. (2004). Solving the forward kinematics of a Gough type parallel

manipulator with interval analysis. The Int. J. of Robotics Research, 23: 221-235.

Michalewicz, Z. (1994). Genetic Algorithms+Data Structures=Evolution programs.

Springer Verlag, Berlin.

Michalewicz, Z. and Attia, N. (1994). Evolutionary optimization of constrained

problems. Proceedings of the Third Annual Conference on Evolutionary

Programming, 98-108.

Miranda, C. (1940). Un' osservazione su un teorema di Brouwer. Bol. Un. Mat. Ital.,

2: 5-7.

Mockus, J. (1989). Bayesian approach to global optimization. Kluwer Academic

Publishers, Dordrecht-London-Boston.

Mockus, J. (1994). Application of bayesian approach to numerical methods of global

and stochastic optimization. Journal of Global Optimizatin, 4: 347-365.

Moore, R. E. (1966). Interval analysis. Prentice-Hall, Englewood Cliffs, NJ.

Moore, R., Hansen, E., and Leclerc, A. (1992). Rigorous methods in global

optimization. In Floudas, C. A., and Pardalos, P. M., editors, Recent Advances in

Global Optimization, pp. 321-342, Princeton University Press.

Morales, K. A. and Quezada, C.C. (1998). A universal eclectic genetic algorithm for

constrained optimization. Proceedings 6th European Congress on Intelligent

Techniques & Soft Computing, 518-522.

Morales, J.L., Nocedal, J., Waltz, R., Liu, G., and Goux, J.P. (2001). Assessing the

potential of interior methods for nonlinear optimization. Report OTC 2001/6,

Optimization Technology Center.

Moré, J.J., Garbow, B.S., and Hillstrom, K.E. (1981). Testing unconstrained

optimization software. ACM Trans. Mathematical Software, 7: 17-41.

Mozart Consortium. (1999). The Mozart programming system. Available from

http://www.mozart-oz.org.

 201

Murray, W. (1997). Sequential quadratic programming methods for large-scale

problems. computational optimization and applications, 7: 127-142.

Murtagh, B.A., and Saunders, M.A. (1978). Large-scale linearly constrained

optimization. Mathematical Programming,14: 41–72.

Nataraj, P.S.V., and Kotecha, K. (2002). An algorithm for global optimization using

the Taylor Bersten form as inclusion function. Journal of Global Optimization, 24:

417-436.

Nelder, J.A., and Mead, R. (1965). A simplex method for function minimization.

Computer Journal, 7: 308-313.

Neumaier, A. (1982). Overestimation in linear interval equations. SIAM Journal of

Numerical Anals, 24: 207-214.

Neumaier, A. (1990). Interval methods for systems of equations encyclopedia of

mathematics and its applications 37, Cambridge University Press, Cambridge.

Neumaier, A. (2004). Complete search in continuous global optimization and

constraint satisfaction. In Iserles, A., editor, Acta Numerica 2004, Cambridge

University Press,.

Neumaier, A., Shcherbina, O., Huyer W. and Vinko, T. (2005). A comparison of

complete global optimization solvers. Math. Programming, 103: 335-356.

Nielsen, J., and Roth, B. (1997). Formulation and solution for the direct and inverse

kinematics problems for mechanisms and mechatronic systems. In: Angeles, J., and

Zakhariev, E., editors, Proceedings of the NATO Advanced Study Institute on

Computational Methods in Mechanisms, pp. 233–252.

Özdamar, L., and Demirhan, M.B. (2000). Experiments with new stochastic global

optimization search techniques. Computers and OR, 27: 841-865.

Özdamar, L., and Demirhan, M.B. (2001). Comparison of partition evaluation

measures in an adaptive partitioning algorithm for global optimization. Fuzzy Sets and

Systems, 117: 47-60.

Panier, E.R., Tits, A.L., and Herskovits, J.N. (1988). A QP-free, globally convergent,

locally superlinearly convergent algorithm for inequality constrained optimization.

SIAM J. on Control and Optimization, 26: 788—811.

 202

Pardalos, P.M., and Rosen, J.B. (1987). Constrained global optimization: Algorithms

and applications. Lecture Notes in Computer Science, 268: 143-143.

Pardalos, P.M. (1993). Complexity in numerical optimization. World Scientific,

Singapore and River Edge, New Jersey.

Pardalos, P.M., and Romeijn, H.E. (2002). Handbook of global optimization Volume 2

(Nonconvex optimization and its applications). Springer, Boston/Dordrecht/London.

Petrov, E., and Benhamou, F. (2002). Improved interval constraint propagation for

constraints on partial derivatives. Lecture Notes in Computer Science, 2330: 1097-

1105.

Pinter, J.D. (1986) Extended univariate algorithm for n-dimensional global

optimization. Computing, 36: 91-103.

Pinter, J.D. (1988). Branch and bound algorithms for solving global optimization

problems with Lipschitzian structure. Optimization, 19:101-110.

Pinter, J.D. (1992). Convergence qualification of adaptive partition algorithms in

global optimization. Mathematical programming, 56: 343-360.

Pinter, J.D. (1996). Global optimization in action. Kluwer Academic Publishers,

Dordrecht.

Pinter, J.D. (1997). LGO- A program system for continuous and Lipschitz global

optimization. In Bomze, I. M., Csendes, T., Horst, R., and Pardalos, P. M., editors,

Developments in Global Optimization, pp.183-197.Kluwer Academic Publishers,

Dordrecht / Boston / London.

Pohl, I. (1971). Bi-directional search. In Meltzer, B., and Michie, D., editors, Machine

Intelligence, pp. 127-140, American Elsevier, New York.

Popova, E.D. (1996). Interval operations involving NaNs. Reliable computing, 2: 161-

166.

Popova, E.D. (2001). Multiplication distributivity of proper and improved intervals.

Reliable Computing, 7: 129 – 140.

Powell, M.J.D. (1964). An efficient method for finding the minimum of a function of

several variables without calculating the derivatives. Computer Journal, 7: 155-162.

 203

PrincetonLib, Princeton library of nonlinear programming models.

http://www.gamsworld.org/performance/ princetonlib/princetonlib.htm.

PrologIA. (1994). Prolog IV: Reference manual and user's guide, Tech. Report.

Puget, J.F., and Van Hentenryck, P. (1998). A constraint satisfaction approach to a

circuit design problem. Journal of Global Optimization, 13: 75-93.

Rao, R.S., Asaithambi, A., and Agrawal, S.K. (1998). Inverse kinematic solution of

robot manipulators using interval analysis. ASME Journal of Mechanical Design, 120:

147–150.

Ratschek, H., and Rokne, J. (1988). New computer methods for global optimization.

Ellis Horwood, Chichester.

Ratschek, H., and Rokne, J. (1995). Interval methods. In Horst, R., and Pardalos, P.

M., editors, Handbook of Global Optimziation, pp. 751-828, Kluwer Academic

publisher, Netherlands.

Ratz, D. (1992). An inclusion algorithm for global optimization in a portable

PASCAL-XSC implementation. In Atanassova, L., and Herzberger, J., editors,

Computer Arithmetic and Enclosure Methods, pp. 329-338, North-Holland, Elsevier,

Amsterdam.

Ratz, D. (1994). Box splitting strategies for the interval Gauss-Seidel step in a global

optimization method. Computing, 53: 337-353.

Ratz, D., and Csendes, T. (1995). On the selection of subdivision directions in interval

branch-and-bound methods for global optimization. Journal of Global Optimization,

7:183-207.

Ratz, D. (1996). On the branching rules in second order branch and bound methods in

global optimization. In Alefeld, G., Frommer, A., and Kang, B., editors, Scientific

Computing and Validated Numerics, pp. 221-227, Akademie-Verlag, Berlin.

Ratz, D. (1997). New results on gap-treating techniques in extended interval newton

Gauss Seidel steps in global optimization. Developments in Global Optimization, pp.

55-72. Kluwer Academic Publishers.

 204

Recio, T., and Gonzalex-Lopez, M.J. (1994). On the symbolic insimplification of the

general 6R-manipulator kinematic equations, In Proceedings of the international

symposium on Symbolic and algebraic computation, pp. 354 – 358.

Robinson, S.M. (1973). Computable error bounds for nonlinear programming. Math.

Programming, 5:235-242.

Romeijn, H.E., and Smith, R.L. (1994). Simulated annealing for constrained global

optimization. Journal of Global Optimization, 5:101-126.

Rosenbrock, H.H. (1970), State space and multivariable theory. Wiley Interscience

Division, New York.

Rump, S.M. (1992). On the solution of interval linear systems. Computing, 47: 337-

353.

Ryoo, H.S., and Sahinidis, N.V. (1995). Global optimization of nonconvex NLPs and

MINLPs with applications in process design. Computers & Chemical Engineering,

19: 551-566.

Ryoo, H.S., and Sahinidis, N.V. (1996). A branch-and-reduce approach to global

optimization. Journal of Global Optimization, 8: 107-139.

Sahinidis, N.V. (1996). Baron: A general purpose global optimization software

package. Journal of Global Optimization, 8: 201-205.

Sahinidis, N.V. (2003). Global optimization and constraint satisfaction: The branch-

and-reduce approach. In Bliek, C., Jermann, C., and Neumaier, A., editors, COCOS

2002, LNCS 2861, pp. 1–16.

Sam-Haroud, D., and Faltings, B. (1996). Consistency techniques for continuous

constraints. Constraints, 1: 85–118.

Sandgren, E. (1988). Nonlinear integer and discrete programming in mechanical

design. Proceeding of the ASME Design Technology Conference, Kissimmee, FL, pp.

95-105.

Sarma, M.S. (1990). On the convergence of the Baba and Dorea random optimization

methods. Journal of Optimization Theory and Applications, 66: 337-343.

 205

Schaffler, S., and Warsitz, H. (1990). A trajectory-following method for

unconstrained optimization. Journal of Optimization Theory and Applications,

67:133-140.

Scherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., and Nguyen, T.-V. (2002).

Benchmarking global optimization and constraint satisfaction codes. Global

Optimization and Constraint Satisfaction: First International Workshop on Global

Constraint Optimization and Constraint Satisfaction, COCOS 2002, Valbonne-Sophia

Antipolis, France.

Schichl, H. (2003). Mathematical modeling and global optimization. Ph.D

dissertation, University of Vienna, Austria.

Schichl, H. (2004). Global optimization in the COCONUT project. In Proceedings of

the Dagstuhl Seminar Numerical Software with Result Verification, Springer Lecture

Notes in Computer Science 2991, Springer, Berlin.

Schichl, H., and Neumaier, A. (2004). Exclusion regions for systems of equations.

SIAM J. Numer. Anal., 42: 383-408.

Schichl, H., and Neumaier, A. (2005). Interval analysis on directed acyclic graphs for

global optimization. Journal of Global Optimization, 33: 541-562.

Schittkowski, K. (1987). More test examples for nonlinear programming codes.

Lecture Notes in Economics and Mathematical Systems 282, Springer-Verlag, Berlin.

Schoen, F. (1991). Stochastic techniques for global optimization: A survey on recent

advances. Journal of Global Optimization, 1: 207-228.

Schwartz, D.I. (1999). Deterministic interval uncertainty methods for structural

analysis. Ph.D Dissertation. State University of New York at Buffalo.

Schwefel, H.P. (1981). Numerical optimization of computer models. Wiley & Sons,

Chichester.

Shang, Y. (1997). Global search methods for solving nonlinear optimization

problems. Ph.d dissertation, University of Illinios, Urbana-Champaign, 1997.

Shanno, D.F., and Phua, K.H. (1989). Numerical experience with sequential quadratic

programming algorithms for equality constrained nonlinear programming. ACM

Transactions on Mathematical Software, 15: 49-63.

 206

Sherali, H. D., and Tuncbilek, C. H. (1992). A global optimization algorithm for

polynomial programming problems using a reformulation-linearization technique,

Journal of Global Optimization, 2:101-112.

Sherali, H. D., and Wang, H. (2001). Global optimization of nonconvex factorable

programming problems, Mathematical Programming, 89:459-478.

Skelboe, S. (1974). Computation of rational interval functions. BIT, 14: 87-95.

Smolka, G. (1995). The OZ programming model. In van Leeuwen, J., editor, Lecture

Notes in Computer Science, 1000: 324-343. Springer-Verlag.

Smith, E.M.B. (1996). On the optimal design of continuous processes. Ph.D thesis,

Imperial College, London.

Smith, E.M.B., and Pantelides, C.C. (1996). Global optimization of general process

models. In Grossmann, I. E., editor, Global Optimization in Engineering design,

Kluwer Publishers, pp. 355-386.

Smith, E.M.B., and Pantelides, C.C. (1999). A symbolic reformulation/spatial branch

and bound algorithm for the global optimization of nonconvex MINLP’s. Computers

and Chemical Eng., 23: 457-478.

Snyman, J.A., and Fatti, L.P. (1987). A multi-start global minimization algorithm

with dynamic search trajectories. Journal of Optimization Theory and Applications,

54: 121-141.

Sommese, A.J., Verschelde, J., and Wampler, C.W. (2002). Advances in polynomial

continuation for solving problems in kinematics. In Proc. ASME Design Engineering

Technical Conf. (CDROM), Montreal, Quebec.

Spaans, R., and Luus, R. (1992). Importance of search-domain reduction in random

optimization. Journal of Optimization Theory and Applications, 75: 635-638.

Spellucci, P. (2002). Solving QP problems by penalization and smoothing. TUD Dept.

of Math. preprint 2242. http://wwwbib.mathematik.tu-darmstadt.de/Math-

Net/Preprints/Listen/files/2242.ps.gz

Stahl, V. (1995). Interval methods for bounding the range of polynomials and solving

systems of nonlinear equations. Ph.D dissertation. Universitat Linz.

 207

Stahl, V. (1997). A sufficient condition for non-overestimation in interval arithmetic.

Computing, 59: 349-363.

Strongin, R.G. (1978). Numerical methods for multiexternal Problems. Nauka,

Moscow.

Stickel, M.E., and Tyson, W.M. (1985). An analysis of consecutively bounded depth-

first search with applications in automated deduction. Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI-85), Los Angeles,

Ca., pp. 1073-1075,.

Sturua, E.G., and Zavriev, S.K. (1991). A trajectory algorithm based on the gradient

method I. the search on the quasioptimal trajectories. Journal of Global Optimization,

1991: 375-388.

Taylor, L., and Kröf, R.E. (1993). Pruning duplicate nodes in depth-first search.

Proceedings of National Conference on Artificial Intelligence (AAAI-93), Washington

D.C., pp. 756-761.

Tawarmalani, M., and Sahinidis, N.V. (2002). Convex extensions and envelopes of

lower semi-continuous functions. Mathematical Programming, 93: 247-263.

Tawarmalani, M., and Sahinidis, N.V. (2004). Global optimization of mixed-integer

nonlinear programs: A theoretical and computational study. Mathematical

Programming, 99: 563-591.

Törn, A. (1973). Global optimization as a combination of global and local search.

Gothenburg Business Adm. Studies, 17:191-206.

Törn, A. (1977). Cluster analysis using seed points and density determined

hyperspheres as an aid to global optimization. IEEE Trans. Syst. Men and

Cybernetics, 7: 610-616.

Törn, A., and Zilinskas, A. (1989). Global optimization. Lecture Notes in Computer

Science, No. 350, Springer-Verlag.

Törn, A., and Viitanen, S. (1992). Topographical global optimization. In Floudas, C.

A., and Pardalos, P. M., editors, Recent Advances in Global Optimization, pp. 385-

398, Princeton University Press.

 208

Törn, A., Ali, M.M., and Viitanen, S. (1999). Stochastic global optimization: Problem

classes and solution techniques. Journal of Global Optimization, 14: 437-447.

Tóth, B. (2002). Empirical investigation of the convergence speed of inclusion

functions. 10th GAMM - IMACS International Symposium on Scientific Computing,

Computer Arithmetic, and Validated Numerics (SCAN2002), Paris, France.

Tung, J. (2001). Interval analysis and its applications to optimization in behavioural

ecology. Independent Research Report, University of Cornell, USA.

Tsai, L.W., and Morgan, A.P. (1985). Solving the kinematics of the most general six

and five-degree-of-freedom manipulators by continuation methods. Journal of

Mechanisms, Transmissions, and Automation in Design 107 189-200.

Tuy, H., Thieu, T.V., and Thai. N.Q. (1985). A conical algorithm for globally

minimizing a concave function over a closed convex set. Mathematics of Operations

Research, 10: 498.

Vaidyanathan, R., and Halwagi, M.E.L. (1994). Global optimization of nonconvex

nonlinear programs via interval analysis. Computers Chemical Engineering, 18: 889-

897.

Vaidyanathan, R., and Halwagi, M.E.L. (1996). Global optimization of nonconvex

MINLP by interval analysis. Global Optimization in Engineering Design, pp. 175-

193, Kluwer Academic Publishers.

Van-Hentenryck, P., Michel, L., and Deville, Y. (1997a). Numerica: A modeling

language for global optimization. MIT press, London, England.

Van-Hentenryck, P., Mc Allester, D., and Kapur, D. (1997b). Solving polynomial

systems using branch and prune approach. SIAM Journal on Numerical Analysis, 34:

797-827.

Verdonk, B., Vervloet, J., and Cuyt, A. (2002). Blending interval and set arithmetic

for maximal reliability. Technical report (http:// www.win.ua.ac.be

/~verdonk/publications .html)

Vincent, T.L., Goh, B.S., and Teo, K.L. (1992). Trajectory-following algorithms for

min-max optimization problems. Journal of Optimization Theory and Applications,

75: 501-519.

 209

Vinkó, T., Lagouanelle, J.-L., and Csendes, T. (2002). Kite: A new inclusion function

for optimization. Validated Computing, Extended Abstracts, pp. 179-181, Toronto,

Canada.

Vu, X.-H., Sam-Haroud, D., and Silaghi, M.-C. (2003). Numerical constraint

satisfaction problems with non-isolated solutions. Global Optimization and

Constraint Satisfaction: First International Workshop on Global Constraint

Optimization and Constraint Satisfaction, COCOS 2002, Revised Selected Papers,

LNCS 2861, pp. 194-210, Springer-Verlag.

Vu, X.-H., Schichl, H., and Sam-Haroud, D. (2004). Using directed acyclic graphs to

coordinate propagation and search for numerical constraint satisfaction problems. In

Proceedings of the 16th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI 2004), pp. 72-81, Florida, USA.

Vu, X-H. (2005). Rigorous solution techniques for numerical constraint satisfaction

problems. Ph.D dissertation, Swiss Federal Institute of Technology, Lausanne,

Switzerland.

Wah, B. W., and Wang, T. (1999). Simulated annealing with asymptotic convergence

for nonlinear constrained global optimization. Lecture Notes In Computer Science,

1713: 461-475.

Wampler, C., Morgan, A., and Sommese, A. (1990). Numerical continuation methods

for solving polynomial systems arising in kinematics. ASME Journal of Mechanical

Design, 112: 59–68.

Wampler, C., and Morgan, A. (1991). Solving the 6R inverse position problem using

a generic-case solution methodology. Mech. Mach. Theory, 26: 91-106.

Watson, L.T., and Baker, C.A. (2000). A fully distributed parallel global search

algorithm. Technical report TR-00-06, Dept. of Computer Science, Virginia Tech.

Wolfe, P. (1962). The reduced-gradient method. unpublished manuscript, RAND

Corporation.

Wolfe, P. (1967). Methods of nonlinear programming. In Abadie, J., editor, Nonlinear

programming, pp. 97-131, John Wiley, NewYork.

Wolfe, M.A. (1994). An interval algorithm for constrained global optimization. J.

Comput. Appl. Math., 50: 605–612.

 210

Yamamura, K., Kawata, H. and Tokue, A. (1998). Interval solution of nonlinear

equations using linear programming. BIT, 38: 186-199.

Yang, Y-F., Li, D-H., and Qi, L. (2003). A feasible sequential linear equation method

for inequality constrained optimization. SIAM J. Optim., 13: 1222-1244.

Yeniay, O. (2005). Penalty function methods for constrained optimization with

genetic algorithms. Mathematical and Computational Applications, 10: 45-56.

Zabinsky, Z.B., and Smith, R.L. (1992). Pure adaptive search in global optimization.

Mathematical Programming, 53:323-338.

Zacharias, C.R., Lemes, M.R., and Pino, A.D. (1998). Combining genetic algorithms

and simulated annealing: A molecular geometry optimization study. THEOCHEM -

Journal of Molecular Structure, 430: 29-39.

Zhou, J.L., and Tits, A.L. (1996). An SQP algorithm for finely discretized continuous

minimax problems and other minimax problems with many objective functions. SIAM

J. on Optimization,. 6: 461-487.

Zhou, J.L., Tits, A.L., and Lawrence, C.T. (1997). User's guide for FFSQP version

3.7 : A fortran code for solving optimization programs, possibly minimax, with

general inequality constraints and linear equality constraints, generating feasible

iterates. Institute for Systems Research, University of Maryland,Technical Report

SRC-TR-92-107r5, College Park, MD 20742, 1997.

Zilinskas, A. (1992). A review of statistical models for global optimization. Journal of

Global Optimization, 2: 145-153.

 211

Appendix A
Detailed computational results on Continuous Constraint Satisfaction Problems

 212

 213

 214

 215

 216

 217

Appendix – B

List of Constrained Optimization Problems

PROBLEM

(Dim, # Nonlin.
Eq., # Lin. Eq., #

Nonlin. Ineq.,
#Lin. Ineq.)

Description Reference

Aircraftb 18, 5, 5, 0, 0

Objective function is a second degree
polynomial function
5 quadratic equations
5 linear equation

Coconut

Avgasb 8, 0, 0, 10, 0 Objective function is a quadratic function
10 linear inequality constraints Princetonlib

Alkyl 14, 6, 1, 0, 0

Objective function is a quadratic function
2 highly dependent quadratic equations
4 quadratic equations
1 linear equation

Coconut

Bt4 3, 1, 1, 0, 0
Objective function is a quadratic function
1 linear equation
1 quadratic equation

Coconut

Bt8 5, 2, 0, 0, 0 Objective function is a quadratic function
2 quadratic equation Coconut

Bt12 5, 3, 0, 0, 0 Objective function is a quadratic function
3 quadratic equation Coconut

Bt11 5, 2, 1, 0, 0
Objective function is a quadratic function
2 quadratic equation
1 linear equation

Coconut

Bt7 5, 3, 0, 0, 0
Objective function is a quadratic function
1 quadratic equation
2 second degree polynomial equation

Coconut

Dispatch 4, 1, 0, 0, 1
Objective function is a second degree function
1 quadratic equation
1 linear equality

Coconut

Dipigri 7, 0, 0, 4, 0

Objective function is a quadratic function
1 quadratic inequality
3 nonlinear second degree polynomial
inequalities

Coconut

Degenlpa 20, 0, 14, 0, 0 Objective function is a linear function
14 linear equations Coconut

Degenlpb 20, 0, 15, 0, 0 Objective function is a linear function
15 linear equations Coconut

Eigminc 22, 22, 0, 0, 0
Objective function is a linear function
1 second degree polynomial equation
21 quadratic equations

Coconut

Ex5_2_4 7, 0, 1, 3, 2

Objective function is a quadratic function
1 linear equation
2 linear inequalities
3 nonlinear quadratic inequalities

Coconut

Ex9_1_4 10, 4, 5, 0, 0
Objective function is a linear function
5 linear equation
4 quadratic equations

Coconut

Ex8_4_2 24, 10, 0, 0, 0 Objective function is a second degree Coconut

 218

PROBLEM

(Dim, # Nonlin.
Eq., # Lin. Eq., #

Nonlin. Ineq.,
#Lin. Ineq.)

Description Reference

polynomial function
10 quadratic equation

Ex9_2_5 7, 3, 4, 0, 0, 0

Objective function is a second degree
polynomial function
3 quadratic equation
4 linear equation

Coconut

Ex14_1_5 6, 0, 4, 2, 0

Objective function is a linear function
2 highly interactive quadratic equations
4 linear equations

Coconut

Ex9_2_6 16, 6, 6, 0, 0

Objective function is a second degree
polynomial function
6 quadratic equations
6 linear equations

Coconut

Ex9_2_7 10, 4, 5, 0, 0

Objective function is a second degree
polynomial function
4 quadratic equations
5 linear equations

Coconut

Ex9_1_2 10, 4, 5, 0, 0
Objective function is a linear function
4 quadratic equations
5 linear equations

Coconut

Ex2_1_9 10, 0, 1, 0, 0 Objective function is a quadratic function
1 linear equations Coconut

Ex2_1_3 13, 0, 0, 0, 9
Objective function is a second degree
polynomial function
9 linear inequality

Coconut

Ex8_4_1 22, 10, 0, 0, 0
Objective function is a second degree
polynomial function
10 quadratic equations

Coconut

Ex8_4_5 15, 11, 0, 0, 0
Objective function is a second degree
polynomial function
11 quadratic equations

Coconut

F_e 7, 0, 0, 3, 4

Objective function is a linear function
1 second degree polynomial inequalities
2 quadratic inequalities
4 linear inequalities

Epperly

Fermat_scop_v
areps 5, 0, 0, 3, 0 Objective function is a linear function

3 nonlinear inequalities Princetonlib

Fp_2_1 6, 0, 0, 1, 1

objective function is a linear function
1 nonlinear second degree polynomial
inequality
1 linear inequality

Epperly

Genhs28 10, 0, 8, 0, 0 objective function is a quadratic function
8 linear equations Coconut

Hs087 11, 4, 2, 0, 0
objective function is a linear function
4 nonlinear trigonometric equations
2 linear equations

Coconut

 219

PROBLEM

(Dim, # Nonlin.
Eq., # Lin. Eq., #

Nonlin. Ineq.,
#Lin. Ineq.)

Description Reference

Hs053 5, 0, 3, 0, 0 objective function is a quadratic function
3 linear equations Coconut

Hs056 7, 4, 0, 0, 0
objective function is a interactive quadratic
function
4 nonlinear trigonometric equations

Coconut

Hs407 5, 3, 0, 0, 0

objective function is a highly interactive
quadratic function
1 third degree polynomial equation
1 second degree polynomial equation
1 quadratic equation

Coconut

Hs108 9, 0, 0, 12, 0
objective function is a quadratic function
1 second degree polynomial equation
11 quadratic equation

Coconut

Hs080 5, 3, 0, 0, 0

objective function is a exponential function
1 second degree polynomial equation
1 quadratic equation
1 third degree polynomial equation

Coconut

Hs043 4, 0, 0, 3, 0
objective function is a second degree
polynomial function
3 second degree polynomial inequalities

Coconut

Hs116 13, 0, 0, 10, 5
objective function is a linear function
10 quadratic inequalities
5 linear inequalities

Coconut

Himmel11 9, 3, 0, 0, 1
objective function is a quadratic function
1 linear inequality
3 quadratic equation

Coconut

Immum 21, 0, 7, 0, 0
objective function is a second degree
polynomial function
7 linear equations

Coconut

Lootsma 3, 0, 0, 2, 0
objective function is a three degree polynomial
function
2 second degree polynomial inequalities

Coconut

Lewispol 6, 6, 3, 0, 0

objective function is a second degree
polynomial function
6 third degree polynomial equations
3 linear equations

Coconut

Mwright 5, 3, 0, 0, 0
objective function is a quadratic function
1 quadratic equations
2 second degree polynomial equations

Coconut

Mhw4d 5, 3, 0, 0, 0

objective function is a quadratic function
1 quadratic equations
1 second degree polynomial equations
1 third degree polynomial equations

Coconut

Madsen 3, 0, 0, 6, 0
Objective function is a linear function
4 trigonometric inequalities
2 quadratic inequalities

Coconut

Minmaxrb 3, 0, 0, 2, 2
Objective function is a linear function
2 linear inequalities
2 second degree polynomial inequalities

Coconut

Median_scop_v 5, 0, 0, 3, 0 Objective function is a linear function Coconut

 220

PROBLEM

(Dim, # Nonlin.
Eq., # Lin. Eq., #

Nonlin. Ineq.,
#Lin. Ineq.)

Description Reference

areps 3 nonlinear inequalities

Matrix2 6, 0, 0, 2, 0 Objective function is a quadratic function
2 quadratic inequalities Coconut

Mistake 9, 0, 0, 12, 0
Objective function is a quadratic function
10 quadratic inequalities
2 second degree polynomial inequalities

Coconut

O32 5, 0, 0, 6, 0 Objective function is a quadratic function
6 quadratic inequalities Coconut

Pgon 12, 0, 0, 15, 5
Objective function is a trigonometric function
15 nonlinear trigonometric inequalities
5 linear inequalities

Coconut

Robot 14, 2, 0, 0, 0 Objective function is a quadratic function
2 nonlinear trigonometric equations Coconut

Rk23 17, 7, 4, 0, 0

Objective function is a linear function
4 quadratic equations
3 highly interactive quadratic equations
4 linear equations

Coconut

S381 13, 0, 1, 0, 3
Objective function is a linear function
1 linear equations
3 linear inequalities

Princetonlib

S355 8, 5, 0, 0, 0

Objective function is a second degree
polynomial function
4 quadratic equations
1 second degree polynomial equation

Princetonlib

S336 3, 1, 1, 0, 0
Objective function is a linear function
1 linear equation
1 second degree polynomial equation

Princetonlib

S262 4, 0, 1, 0, 3
Objective function is a linear function
1 linear equation
3 linear inequalities

Princetonlib

S203 5, 3, 0, 0, 0
Objective function is a Second degree
polynomial function
3 quadratic equation

Princetonlib

Springs_nonco
nvex 32, 0, 0, 10, 0

Objective function is a Second degree
polynomial function
9 quadratic inequalities
1 second degree polynomial inequality

Princetonlib

Steifold 4, 3, 0, 0, 0

Objective function is a Second degree
polynomial function
1 quadratic equation
2 second degree polynomial equations

Balogh and
Toth

Sample 4, 0, 0, 2, 0 Objective function is a linear function
2 quadratic inequalities Princetonlib

	Text 1: 2007

